Chun TW, Fauci AS. HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. Aids. 2012;26(10):1261–8. https://doi.org/10.1097/QAD.0b013e328353f3f1.
Article
PubMed
Google Scholar
Dahl V, Josefsson L, Palmer S. HIV reservoirs, latency, and reactivation: prospects for eradication. Antiviral Res. 2010;85(1):286–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19808057.
Article
CAS
PubMed
Google Scholar
Barton K, Winckelmann A, Palmer S. HIV-1 reservoirs during suppressive therapy. Trends Microbiol. 2016;24(5):345–55. https://doi.org/10.1016/j.tim.2016.01.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassan J, Browne K, De Gascun C. HIV-1 in Monocytes and Macrophages: an overlooked reservoir? Viral Immunol. 2016;29(9):532–3 Available from: https://www.liebertpub.com/doi/10.1089/vim.2016.0091.
Article
CAS
PubMed
Google Scholar
Kim W-K, Corey S, Alvarez X, Williams K. Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol. 2003;74(5):650–6 Available from: http://doi.wiley.com/10.1189/jlb.0503207.
Article
CAS
PubMed
Google Scholar
Kumar A, Abbas W, Herbein G. HIV-1 Latency in Monocytes/Macrophages. Viruses. 2014;6(4):1837–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24759213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grossman Z, Meier-Schellersheim M, Sousa AE, Victorino RMM, Paul WE. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med. 2002;8(4):319–23. Available from: http://www.nature.com/articles/nm0402-319. https://doi.org/10.1038/nm0402-319.
Article
CAS
PubMed
Google Scholar
Parihar A, Eubank TD, Doseff AI. Monocytes and Macrophages regulate immunity through dynamic networks of survival and cell death. J Innate Immun. 2010;2(3):204–15. Available from: https://www.karger.com/Article/FullText/296507. https://doi.org/10.1159/000296507.
Article
PubMed
PubMed Central
Google Scholar
Ovchinnikov DA. Macrophages in the embryo and beyond: Much more than just giant phagocytes. genesis. 2008;46(9):447–62. https://doi.org/10.1002/dvg.20417.
Article
PubMed
Google Scholar
Castellano P, Prevedel L, Eugenin EA. HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving Bim. Sci Rep. 2017;7(1):12866. https://doi.org/10.1038/s41598-017-12758-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z. Sexual Transmission and Propagation of SIV and HIV in Resting and Activated CD4+ T Cells. Science. 1999;286(5443):1353–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/10558989.
Article
CAS
PubMed
Google Scholar
Gavegnano C, Schinazi RF. Antiretroviral therapy in Macrophages: implication for HIV eradication. Antivir Chem Chemother. 2009;20(2):63–78 Available from: http://journals.sagepub.com/doi/10.3851/IMP1374.
Article
CAS
PubMed
Google Scholar
Watters SA, Mlcochova P, Gupta RK. Macrophages: the neglected barrier to eradication. Curr Opin Infect Dis. 2013;26(6):561–6. https://doi.org/10.1097/QCO.0000000000000014.
Article
CAS
PubMed
Google Scholar
Gaudin R, Berre S, Cunha de Alencar B, Decalf J, Schindler M, Gobert F-X, et al. Dynamics of HIV-Containing Compartments in Macrophages Reveal Sequestration of Virions and Transient Surface Connections. PLoS One. 2013;8(7):e69450 Available from: http://dx.plos.org/10.1371/journal.pone.0069450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu H, Wang J-J, Qi M, Yoon J-J, Wen X, Chen X, et al. The Intracellular Virus-Containing Compartments in Primary Human Macrophages Are Largely Inaccessible to Antibodies and Small Molecules. PLoS One. 2012;7(5):e35297. https://doi.org/10.1371/journal.pone.0035297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton KL, Garcia V, Clements JE, Walker BD. HIV Infection of Macrophages: Implications for Pathogenesis and Cure. Pathog Immun. 2017;2(2):179 Available from: https://www.paijournal.com/index.php/paijournal/article/view/204.
Article
PubMed
PubMed Central
Google Scholar
Kruize Z, Kootstra NA. The role of Macrophages in HIV-1 persistence and pathogenesis. Front Microbiol. 2019;10(December):1–17 Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.02828/full.
Google Scholar
Archin NM, Margolis DM. Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis. 2014;27(1):29–35. https://doi.org/10.1097/QCO.0000000000000026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV. Cell Host Microbe. 2018;23(1):14–26. https://doi.org/10.1016/j.chom.2017.12.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue J, Fu C, Cong Z, Peng L, Peng Z, Chen T, et al. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages. FEBS J. 2017;284(1):97–113 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/febs.13955.
Article
CAS
PubMed
Google Scholar
Perez OD, Nolan GP, Magda D, Miller RA, Herzenberg LA, Herzenberg LA. Motexafin gadolinium (Gd-Tex) selectively induces apoptosis in HIV-1 infected CD4+ T helper cells. Proc Natl Acad Sci U S A. 2002;99(4):2270–4. https://doi.org/10.1073/pnas.261711499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev. 2009;35(3):280–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0305737208003174. https://doi.org/10.1016/j.ctrv.2008.11.006.
Article
CAS
PubMed
Google Scholar
Cunyat F, Rainho JN, West B, Swainson L, JM MC, Stevenson M. Colony-Stimulating Factor 1 Receptor Antagonists Sensitize Human Immunodeficiency Virus Type 1-Infected Macrophages to TRAIL-Mediated Killing. 2016;90(14):6255–62 Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.00231-16.
Saxena M, Busca A, Pandey S, Kryworuchko M, Kumar A. CpG protects human Monocytic cells against HIV-Vpr–induced apoptosis by cellular inhibitor of Apoptosis-2 through the calcium-activated JNK pathway in a TLR9-independent manner. J Immunol. 2011;187(11):5865–78 Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1100115.
Article
CAS
PubMed
Google Scholar
Pache L, Dutra MS, Spivak AM, Marlett JM, Murry JP, Hwang Y, et al. BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by Smac Mimetics to promote reversal of viral Latency. Cell Host Microbe. 2015;18(3):345–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312815003376. https://doi.org/10.1016/j.chom.2015.08.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parameswaran S, Kundapur D, Vizeacoumar FS, Freywald A, Uppalapati M, Vizeacoumar FJ. A road map to personalizing targeted Cancer therapies using synthetic lethality. Trends in Cancer. 2019;5(1):11–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405803318302425. https://doi.org/10.1016/j.trecan.2018.11.001.
Article
CAS
PubMed
Google Scholar
Dong SXM, Caballero R, Ali H, Roy DLF, Cassol E, Kumar A. Transfection of hard-to-transfect primary human macrophages with Bax siRNA to reverse Resveratrol-induced apoptosis. RNA Biol. 2020;17(6):755–64. https://doi.org/10.1080/15476286.2020.1730081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vizeacoumar FJ, Arnold R, Vizeacoumar FS, Chandrashekhar M, Buzina A, Young JTF, et al. A negative genetic interaction map in isogenic cancer cell lines reveals cancer cell vulnerabilities. Mol Syst Biol. 2013;9(1):696. Available from: https://onlinelibrary.wiley.com/doi/10.1038/msb.2013.54.
Paul JM, Toosi B, Vizeacoumar FS, Bhanumathy KK, Li Y, Gerger C, et al. Targeting synthetic lethality between the SRC kinase and the EPHB6 receptor may benefit cancer treatment. Oncotarget. 2016;7(31):50027–42. https://doi.org/10.18632/oncotarget.10569.
Article
PubMed
PubMed Central
Google Scholar
Imbeault M, Giguère K, Ouellet M, Tremblay MJ. Exon Level Transcriptomic Profiling of HIV-1-Infected CD4+ T Cells Reveals Virus-Induced Genes and Host Environment Favorable for Viral Replication. Douek DC, editor. PLoS Pathog. 2012;8(8):e1002861. Available from:https://dx.plos.org/10.1371/journal.ppat.1002861.
Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb Protoc. 2016;2016(7):pdb.prot087163 Available from: http://www.cshprotocols.org/lookup/doi/10.1101/pdb.prot087163.
Article
Google Scholar
Chuck AS, Clarke MF, Palsson BO. Retroviral infection is limited by Brownian motion. Hum GENE Ther Y. 1996;7(13):1527–34. https://doi.org/10.1089/hum.1996.7.13-1527.
Article
CAS
Google Scholar
Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. Mol Cell Ther. 2014;2(1):10 Available from: http://molcelltherapies.biomedcentral.com/articles/10.1186/2052-8426-2-10.
Article
PubMed
PubMed Central
Google Scholar
Levesque K, Finzi A, Binette J, Cohen E. Role of CD4 receptor Down-regulation during HIV-1 infection. Curr HIV Res. 2004;2(1):51–9. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-162X&volume=2&issue=1&spage=51. https://doi.org/10.2174/1570162043485086.
Article
CAS
PubMed
Google Scholar
Alfano M, Vallanti G, Biswas P, Bovolenta C, Vicenzi E, Mantelli B, et al. The binding subunit of pertussis toxin inhibits HIV replication in human Macrophages and virus expression in chronically infected Promonocytic U1 cells. J Immunol. 2001;166(3):1863–70 Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.166.3.1863.
Article
CAS
PubMed
Google Scholar
Hart T, Brown KR, Sircoulomb F, Rottapel R, Moffat J. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Biol. 2014;10(7):733 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24987113%5Cn; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4299491.
Article
PubMed
PubMed Central
Google Scholar
Auewarakul P, Paungcharoen V, Louisirirotchanakul S, Wasi C. Application of HIV-1-green fluorescent protein (GFP) reporter viruses in neutralizing antibody assays. Asian Pacific J Allergy Immunol. 2001;19(2):139–44.
CAS
Google Scholar
Imbeault M, Lodge R, Ouellet M, Tremblay MJ. Efficient magnetic bead-based separation of HIV-1-infected cells using an improved reporter virus system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell population. Virology. 2009;393(1):160–7. https://doi.org/10.1016/j.virol.2009.07.009.
Article
CAS
PubMed
Google Scholar
Rana S, Besson G, Cook DG, Rucker J, Smyth RJ, Yi Y, et al. Role of CCR5 in infection of primary macrophages and lymphocytes by macrophage-tropic strains of human immunodeficiency virus: resistance to patient-derived and prototype isolates resulting from the delta ccr5 mutation. J Virol. 1997;71(4):3219–27. https://doi.org/10.1128/jvi.71.4.3219-3227.1997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hübner W, Chen P, Del Portillo A, Liu Y, Gordon RE, Chen BK, et al. Sequence of human immunodeficiency virus type 1 (HIV-1) gag localization and oligomerization monitored with live confocal imaging of a replication-competent, fluorescently tagged HIV-1. J Virol. 2007;81(22):12596–607. https://doi.org/10.1128/JVI.01088-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahabieh MS, Ooms M, Simon V, Sadowski I. A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 is latent shortly after infection. J Virol. 2013;87(8):4716–27. Available from: https://jvi.asm.org/content/87/8/4716. https://doi.org/10.1128/JVI.03478-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill C, Dowling C, O’Neill AJ, Watson RWG. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer. 2009;8(1):39 Available from: http://molecular-cancer.biomedcentral.com/articles/10.1186/1476-4598-8-39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin H-S, Lee D-H, Kim D-H, Chung J-H, Lee S-J, Lee TH. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate Genotoxic stress–induced nuclear factor-κB activation. Cancer Res. 2009;69(5):1782–91 Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-08-2256.
Article
CAS
PubMed
Google Scholar
Fulda S. Smac mimetics as IAP antagonists. Semin Cell Dev Biol. 2015;39:132–8. https://doi.org/10.1016/j.semcdb.2014.12.005.
Article
CAS
PubMed
Google Scholar
Campbell GR, To RK, Zhang G, Spector SA. SMAC mimetics induce autophagy-dependent apoptosis of HIV-1-infected macrophages. Cell Death Dis. 2020;11(7):590. https://doi.org/10.1038/s41419-020-02761-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pincus Z, Mazer TC, Slack FJ. Autofluorescence as a measure of senescence in C. elegans: Look to red, not blue or green. Aging (Albany NY). 2016;8(5):889–98.
Article
CAS
Google Scholar
Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979;27(1):36–43. https://doi.org/10.1177/27.1.220325.
Article
CAS
PubMed
Google Scholar
Dittmar R, Potier E, van Zandvoort M, Ito K. Assessment of cell viability in three-dimensional scaffolds using cellular auto-fluorescence. Tissue Eng Part C Methods. 2012;18(3):198–204 Available from: https://www.liebertpub.com/doi/10.1089/ten.tec.2011.0334.
Article
CAS
PubMed
Google Scholar
Okoye AA, Picker LJ. CD4 + T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev. 2013;254(1):54–64 Available from: http://doi.wiley.com/10.1111/imr.12066.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garg H, Mohl J, Joshi A. HIV-1 induced bystander apoptosis. Viruses. 2012;4(11):3020–43 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23202514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenz E, Badley A. Impact of mitochondrial regulation of apoptosis on the pathogenesis and treatment of HIV-1-induced immunodeficiency. Mitochondrion. 2004;4(2–3):235–54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567724904000996. https://doi.org/10.1016/j.mito.2004.05.017.
Article
CAS
PubMed
Google Scholar
Morén C, González-Casacuberta I, Álvarez-Fernández C, Bañó M, Catalán-Garcia M, Guitart-Mampel M, et al. HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion. J Cell Mol Med. 2017;21(2):402–9 Available from: http://doi.wiley.com/10.1111/jcmm.12985.
Article
PubMed
CAS
Google Scholar
Morse CG, Voss JG, Rakocevic G, McLaughlin M, Vinton CL, Huber C, et al. HIV infection and antiretroviral therapy have divergent effects on mitochondria in adipose tissue. J Infect Dis. 2012;205(12):1778–87 Available from: https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jis101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo R, Gu J, Wu M, Yang M. Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell. 2016;7(12):854–65. https://doi.org/10.1007/s13238-016-0329-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang S, Javadov S. Elucidating the contribution of ETC complexes I and II to the respirasome formation in cardiac mitochondria. Sci Rep. 2018;8(1):17732. https://doi.org/10.1038/s41598-018-36040-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez-Vizarra E, Bugiani M, Goffrini P, Carrara F, Farina L, Procopio E, et al. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet. 2007;16(10):1241–52. Available from: http://academic.oup.com/hmg/article/16/10/1241/628176/Impaired-complex-III-assembly-associated-with. https://doi.org/10.1093/hmg/ddm072.
Article
CAS
PubMed
Google Scholar
Baran AA, Silverman KA, Zeskand J, Koratkar R, Palmer A, McCullen K, et al. The modifier of min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression. Genome Res. 2007;17(5):566–76 Available from: http://www.genome.org/cgi/doi/10.1101/gr.6089707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rak M, Benit P, Chretien D, Bouchereau J, Schiff M, El-Khoury R, et al. Mitochondrial cytochrome c oxidase deficiency. Clin Sci. 2016;130(6):393–407 Available from: http://www.clinsci.org/cgi/doi/10.1042/CS20150707.
Article
CAS
Google Scholar
Ivanov AV, Valuev-Elliston VT, Ivanova ON, Kochetkov SN, Starodubova ES, Bartosch B, et al. Oxidative Stress during HIV Infection: Mechanisms and Consequences. Oxid Med Cell Longev. 2016;2016(2):1–18 Available from: https://www.hindawi.com/journals/omcl/2016/8910396/.
Article
CAS
Google Scholar
Elbim C, Pillet S, Prevost MH, Preira A, Girard PM, Rogine N, et al. Redox and activation status of monocytes from human immunodeficiency virus-infected patients: relationship with viral load. J Virol. 1999;73(6):4561–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10233914%0A; http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC112496. https://doi.org/10.1128/JVI.73.6.4561-4566.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treitinger S, Verdi M, Oliveira S, et al. Decreased antioxidant defence in individuals infected by the human immunodeficiency virus. Eur J Clin Invest. 2000;30(5):454–9 Available from: http://doi.wiley.com/10.1046/j.1365-2362.2000.00642.x.
Article
CAS
PubMed
Google Scholar
Ogawa M, Takemoto Y, Sumi S, Inoue D, Kishimoto N, Takamune N, et al. ATP generation in a host cell in early-phase infection is increased by upregulation of cytochrome c oxidase activity via the p2 peptide from human immunodeficiency virus type 1 gag. Retrovirology. 2015;12(1):1–14.
Article
CAS
Google Scholar
Hargreaves IP, Duncan AJ, Wu L, Agrawal A, Land JM, Heales SJR. Inhibition of mitochondrial complex IV leads to secondary loss complex II-III activity: implications for the pathogenesis and treatment of mitochondrial encephalomyopathies. Mitochondrion. 2007;7(4):284–7. https://doi.org/10.1016/j.mito.2007.02.001.
Article
CAS
PubMed
Google Scholar
Wang L, Duan Q, Wang T, Ahmed M, Zhang N, Li Y, et al. Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor. Oxid Med Cell Longev. 2015;2015:1–14 Available from: http://www.hindawi.com/journals/omcl/2015/217670/.
Google Scholar
Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ, Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett. 1994;339(1–2):40–4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8313978.
Article
CAS
PubMed
Google Scholar
Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11256882.
Article
CAS
PubMed
Google Scholar
Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet. 2014;23(22):5866–78 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24939910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res. 2008;6(5):388–400 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18855649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dale BM, McNerney GP, Hübner W, Huser TR, Chen BK. Tracking and quantitation of fluorescent HIV during cell-to-cell transmission. Methods. 2011;53(1):20–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1046202310001817. https://doi.org/10.1016/j.ymeth.2010.06.018.
Article
CAS
PubMed
Google Scholar
Bolduc J-F, Ouellet M, Hany L, Tremblay MJ. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6 + CD4 + T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection. J Virol. 2017;91(4):1–15 Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.01402-16.
Article
Google Scholar
Rao S, Amorim R, Niu M, Breton Y, Tremblay MJ, Mouland AJ. Host mRNA decay proteins influence HIV-1 replication and viral gene expression in primary monocyte-derived macrophages. Retrovirology. 2019;16(1):3 Available from: https://doi.org/10.1186/s12977-019-0465-2.
Article
PubMed
PubMed Central
Google Scholar
Stuchell MD, Garrus JE, Müller B, Stray KM, Ghaffarian S, McKinnon R, et al. The Human Endosomal Sorting Complex Required for Transport (ESCRT-I) and Its Role in HIV-1 Budding. J Biol Chem. 2004;279(34):36059–71 Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M405226200.
Article
CAS
PubMed
Google Scholar
Hassan MA, Butty V, Jensen KDC, Saeij JPJ. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res. 2014;24(3):377–89 Available from: http://genome.cshlp.org/cgi/doi/10.1101/gr.166033.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tasker C, Subbian S, Gao P, Couret J, Levine C, Ghanny S, et al. IFN-ε protects primary macrophages against HIV infection. JCI Insight. 2016;1(20):1–17 Available from: https://insight.jci.org/articles/view/88255.
Article
Google Scholar
Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in Human Immunodeficiency Virus Type I infection. Retrovirology. 2012;9(1):82 Available from: http://retrovirology.biomedcentral.com/articles/10.1186/1742-4690-9-82.
Article
CAS
PubMed
PubMed Central
Google Scholar
DiNapoli SR, Hirsch VM, Brenchley JM. Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections. J Virol. 2016;90(17):7596–606 Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.00672-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aquaro S, Caliò R, Balzarini J, Bellocchi MC, Garaci E, Perno CF. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res. 2002;55(2):209–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166354202000529. https://doi.org/10.1016/S0166-3542(02)00052-9.
Article
CAS
PubMed
Google Scholar
Aragaki M, Takahashi K, Akiyama H, Tsuchiya E, Kondo S, Nakamura Y, et al. Characterization of a cleavage stimulation factor, 3′ pre-RNA, subunit 2, 64 kDa (CSTF2) as a therapeutic target for lung Cancer. Clin Cancer Res. 2011;17(18):5889–900 Available from: http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-11-0240.
Article
CAS
PubMed
Google Scholar
Wu K, Wang W, Ye Y, Huang J, Zhou Y, Zhang Y, et al. Integration of protein interaction and gene co-expression information for identification of melanoma candidate genes. Melanoma Res. 2019;29(2):126–33. Available from: http://insights.ovid.com/crossref?an=00008390-201904000-00003. https://doi.org/10.1097/CMR.0000000000000525.
Article
CAS
PubMed
Google Scholar
Elsner M, Rauser S, Maier S, Schöne C, Balluff B, Meding S, et al. MALDI imaging mass spectrometry reveals COX7A2, TAGLN2 and S100-A10 as novel prognostic markers in Barrett’s adenocarcinoma. J Proteomics. 2012;75(15):4693–704. https://doi.org/10.1016/j.jprot.2012.02.012.
Article
CAS
PubMed
Google Scholar
Ahr B, Robert-Hebmann V, Devaux C, Biard-Piechaczyk M. Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology. 2004;1:1–12.
Article
CAS
Google Scholar
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131–49. Available from: https://pubs.geoscienceworld.org/jsedres/article/36/4/973-976/95989. https://doi.org/10.1046/j.1365-2184.2003.00266.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez Canadillas JM. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J. 2003;22(11):2821–30 Available from: http://emboj.embopress.org/cgi/doi/10.1093/emboj/cdg259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001;11(1):39–46. https://doi.org/10.1016/S0959-440X(00)00167-6.
Article
CAS
PubMed
Google Scholar
Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta - Bioenerg. 2014;1837(4):418–26. https://doi.org/10.1016/j.bbabio.2013.10.004.
Article
CAS
Google Scholar
Pearce LL, Lopez Manzano E, Martinez-Bosch S, Peterson J. Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem Res Toxicol. 2008;21(11):2073–81 Available from: https://pubs.acs.org/doi/10.1021/tx800140y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betterton EA. Environmental fate of sodium Azide derived from automobile airbags. Crit Rev Environ Sci Technol. 2003;33(4):423–58 Available from: http://www.tandfonline.com/doi/full/10.1080/10643380390245002.
Article
CAS
Google Scholar