Oguntibeju OO. Quality of life of people living with HIV and AIDS and antiretroviral therapy. HIV/AIDS. 2012:117–24.
World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: WHO; 2009.
Google Scholar
Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ. 1998;316:1043–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotseva K, Wood D, De Backer G, De Bacquer D, Pyorala K, Keil U, Group ES. EUROASPIRE III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil. 2009;16:121–37.
Article
PubMed
Google Scholar
Centers for Disease Control and Prevention. How Tobacco Smoke Causes Disease: The Biology and Behavioural Basis for Smoking-attributable Disease 2010. A Report of the Surgeon General. http://www.surgeongeneral.gov/library/tobaccosmoke/index.html.
He J, Vupputuri S, Allen K, Prerost MR, Hughes J, Whelton PK. Passive smoking and the risk of coronary heart disease-a meta-analysis of epidemiologic studies. N Engl J Med. 1999;340:920–6.
Article
CAS
PubMed
Google Scholar
Helleberg M, Afzal S, Kronborg G, et al. Mortality attributable to smoking among HIV-1-infected individuals: a nationwide, population-based cohort study. Clin Infect Dis. 2013;56:727–34.
Article
PubMed
Google Scholar
Rasmussen LD, Helleberg M, May MT, et al. Myocardial infarction among Danish HIV-infected individuals: population-attributable fractions associated with smoking. Clin Infect Dis. 2015;60:1415–23.
Article
PubMed
Google Scholar
Helleberg M, May MT, Ingle SM, et al. Smoking and life expectancy among HIV-infected individuals on antiretroviral therapy in Europe and North America. AIDS. 2015;29:221–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guidelines for the use of Antiretroviral Agents in HIV-1 Infected Adults and Adolescents 14/07/2016. Available at https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-treatment-guidelines
Antinori A, DI Biagio A, Marcotullio S, et al. Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons. Update 2016. New Microbiol. 2017;40:86–98.
PubMed
Google Scholar
Sun D, Wu Y, Yuan Y, Wang Y, Liu W, Yang J. Is the atherosclerotic process accentuated under conditions of HIV infection, antiretroviral therapy, and protease inhibitor exposure? Meta-analysis of the markers of arterial structure and function. Atherosclerosis. 2015;242:109–16.
Article
CAS
PubMed
Google Scholar
Molina JM, Andrade-Villanueva J, Echevarria J, et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet. 2008;372(9639):646–55.
Article
CAS
PubMed
Google Scholar
Ryom L, Lundgren JD, El-Sadr WM, et al. Association between cardiovascular disease and contemporarily used protease inhibitors. Conference on Retroviruses and Opportunistic Infections (CROI), February 13–16, 2017, Seattle. Abstract 128LB.
Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral- naive patients: a 3-year randomized trial. JAMA. 2004;292:191–201.
Article
CAS
PubMed
Google Scholar
Smith KY, Patel P, Fine D, et al. Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS. 2009;23:1547–56.
Article
CAS
PubMed
Google Scholar
Molina JM, Cahn P, Grinsztejn B, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1: a phase 3 randomised double-blind active-controlled trial. Lancet. 2011;378(9787):238–46.
Article
CAS
PubMed
Google Scholar
Girard PM, Campbell TB, Grinsztejn B, et al. Pooled week 96 results of the phase III DUET-1 and DUET-2 trials of etravirine: further analysis of adverse events and laboratory abnormalities of special interest. HIV Med. 2012;13:427–35.
Article
CAS
PubMed
Google Scholar
Rockstroh JK, DeJesus E, Lennox JL, et al. Durable efficacy and safety of raltegravir versus efavirenz when combined with tenofovir/emtricitabine in treatment-naive HIV-1-infected patients: final 5-year results from STARTMRK. J Acquir Immune Defic Syndr. 2013;63(1):77–85.
Article
CAS
PubMed
Google Scholar
Quercia R, Roberts J, Martin-Carpenter L. Comparative changes of lipid levels in treatment-naive, HIV-1-infected adults treated with dolutegravir vs. efavirenz, raltegravir, and ritonavir-boosted darunavir-based regimens over 48 weeks. Clin Drug Investig. 2015;35:211–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sax PE, DeJesus E, Mills A, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet. 2012;379(9835):2439–48.
Article
CAS
PubMed
Google Scholar
Sierra-Madero J, Di Perri G, Wood R, et al. Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin Trials. 2010;11:125–32.
Article
CAS
PubMed
Google Scholar
Moyle GJ, Orkin C, Fisher M, et al. A randomized comparative trial of continued abacavir/lamivudine plus efavirenz or replacement with efavirenz/emtricitabine/tenofovir DF in hypercholesterolemic HIV-1 infected individuals. PLoS One. 2015;10(2):e0116297.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campo R, DeJesus E, Bredeek UF, et al. A prospective 48-week study to evaluate efficacy and safety of switching to emtricitabine/tenofovir from lamivudine/abacavir in virologically suppressed HIV-1 infected patients on a boosted protease inhibitor containing antiretroviral regimen. Clin Infect Dis. 2013;56:1637–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS. 2005;19:917–25.
Article
CAS
PubMed
Google Scholar
Martínez E, Arnaiz JA, Podzamczer D, et al. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. N Engl J Med. 2003;349:1036–46.
Article
PubMed
Google Scholar
Palella FJ Jr, Fisher M, Tebas P, et al. Simplification to rilpivirine/emtricitabine/tenofovir disoproxil fumarate from ritonavir-boosted protease inhibitor antiretroviral therapy in a randomized trial of HIV-1 RNA-suppressed participants. AIDS. 2014;28(3):335–44.
Article
CAS
PubMed
Google Scholar
Echeverría P, Bonjoch A, Puig J, et al. Randomised study to assess the efficacy and safety of once-daily etravirine-based regimen as a switching strategy in HIV-infected patients receiving a protease inhibitor-containing regimen. Etraswitch study PLoS ONE. 2015;9:e84676.
Article
CAS
Google Scholar
Di Biagio A, Riccardi N, Taramasso L, et al. Switch from unboosted protease inhibitor to a single-tablet regimen containing rilpivirine improves cholesterol and triglycerides. Int J of Antimicrobial Agents. 2016;48:551–4.
Article
CAS
Google Scholar
Eron JJ, Young B, Cooper DA, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet. 2010;375(9712):396–40.
Article
CAS
PubMed
Google Scholar
Saumoy M, Sánchez-Quesada JL, Martínez E, et al. LDL subclasses and lipoprotein-phospholipase A2 activity in suppressed HIV-infected patients switching to raltegravir: Spiral substudy. Atherosclerosis. 2012;225:200–7.
Article
CAS
PubMed
Google Scholar
Arribas JR, Pialoux G, Gathe J, et al. Simplification to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of ritonavir-boosted protease inhibitor with emtricitabine and tenofovir in adults with virologically suppressed HIV (STRATEGY-PI): 48 week results of a randomised, open-label, phase 3b, non-inferiority trial. Lancet Infect Dis. 2014;14:581–9.
Article
CAS
PubMed
Google Scholar
Hileman CO, Wohl DA, Tisch DJ, Debanne SM, McComsey GA. Initiation of an abacavir-containing regimen in HIV-infected adults is associated with a smaller decrease in inflammation and endothelial activation markers compared to non-abacavir-containing regimens. AIDS Res Hum Retrovir. 2012;28:1561–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martínez E, D'Albuquerque PM, Llibre JM, et al. SPIRAL trial group. Changes in cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS. 2012;26:2315–26.
Article
PubMed
CAS
Google Scholar
Chastain DB, Henderson H, Stover KR. Epidemiology and management of antiretroviral-associated cardiovascular disease. Open AIDS J. 2015;9:23–37.
Article
PubMed
PubMed Central
Google Scholar
Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:a:D study: a multi-cohort collaboration. Lancet. 2008;371(9622):1417–26.
Article
CAS
PubMed
Google Scholar
Ding X, Andraca-Carrera E, Cooper C, Miele P, Kornegay C, Soukup M, Marcus KA. No association of abacavir use with myocardial infarction: findings of an FDA meta-analysis. J Acquir Immune Defic Syndr. 2012;61(4):441–7.
Article
CAS
PubMed
Google Scholar
Imaz A, Podzamcer D. Tenofovir alefenamide, emtricitabine, elvitegravir and cobicistat combination therapy for the treatment of HIV. Exp Review of Anti-infective therapy. 2017:1–15.
Spreen W, Ford SL, Chen S, et al. GSK1265744 pharmacokinetics in plasma and tissue after single-dose long-acting injectable administration in healthy subjects. J Acquir Immune Defic Syndr. 2014;67(5):481–6.
Article
CAS
PubMed
Google Scholar
Spreen W, Williams P, Margolis D, et al. Pharmacokinetics, safety, and tolerability with repeat doses of GSK1265744 and rilpivirine (TMC278) long-acting nanosuspensions in healthy adults. J Acquir Immune Defic Syndr. 2014;67:487–92.
Article
CAS
PubMed
Google Scholar
Lou Y, Buchanan AM, Chen S, et al. Effect of Cabotegravir on Cardiac Repolarization in Healthy Subjects. Clin Pharmacol Drug Dev. 2016;5:509–516.
Spreen W, Min S, Ford SL, et al. Pharmacokinetics, safety, and monotherapy antiviral activity of GSK1265744, an HIV integrase strand transfer inhibitor. HIV Clin Trials. 2013;14:192–203.
Article
CAS
PubMed
Google Scholar
Margolis DA, Brinson CC, Smith GHR, et al. Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, phase 2b, dose-ranging trial. Lancet Infect Dis. 2015;15:1145–55.
Article
CAS
PubMed
Google Scholar
Anderson MS, Gilmartin J, Cilissen C, et al. Safety, tolerability and pharmacokinetics of doravirine, a novel HIV non-nucleoside reverse transcriptase inhibitor, after single and multiple doses in healthy subjects. Antivir Ther. 2015;20:397–405.
Article
CAS
PubMed
Google Scholar
Schürmann D, Sobotha C, Gilmartin J, et al. A randomized, double-blind, placebo-controlled, short-term monotherapy study of doravirine in treatment-naïve HIV-infected patients. AIDS. 2016;30:57–63.
PubMed
Google Scholar
Gatel J, Morales-Ramirez J, Hagins D, et al. Forty-eight-week efficacy and safety and early CNS tolerability of doravirine (MK-1439), a novel NNRTI, with TDF/FTC in ART-naïve HIV-positive patients. J Int AIDS Soc. 2014;17(Suppl 3):19532.
Google Scholar
Cholesterol Treatment Trialists’ Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet. 2010;376:1670–81.
Article
CAS
Google Scholar
Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RG, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomized controlled trials. BMJ. 2009;338:b2376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills EJ, Rachlis B, Wu P, Deveraux PJ, Arora P, Perri D. Primary prevention of cardiovascular mortality and events with statin treatments: a network meta-analysis involving more than 65,000 patients. J Am Coll Cardiol. 2008;52:1769–81.
Article
CAS
PubMed
Google Scholar
Feinstein MJ, Achenbach CJ, Stone NJ, Lloyd-Jones DM. A systematic review of the usefulness of statin therapy in HIV-infected patients. Am J Cardiol. 2015;115:1760–6.
Article
CAS
PubMed
Google Scholar
Calza L, Manfredi R, Colangeli V, Pocaterra D, Pavoni M, Chiodo F. Rosuvastatin, pravastaton, and atorvastatin gor the treatmenet of hypercholesterolemia in HIV-infected patients receiving protease inhibitors. Curr HIV Res. 2008;6:572–8.
Article
CAS
PubMed
Google Scholar
Longenecker CT, Sattar A, Gilkeson R, McComsey GA. Rosuvastatin slows progression of subclinical atherosclerosis in patients with treated HIV infection. AIDS. 2016;30:2195–203.
Article
CAS
PubMed
Google Scholar
Funderburg NT, Jiang Y, Debanne SM, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;68:396–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
ESC/EAS Guidelines for the management of dyslipidaemia: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J 2011; 32:1769–818.
ACC/AHA 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 24;129(25 Suppl 2):S1–45.
Catapano AL. Perspectives on low-density lipoprotein cholesterol goal achievement. Curr Med Res Opin. 2009;25:431–47.
Article
CAS
PubMed
Google Scholar
Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92:2506–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray KK, Kastelein JJ, Boekholdt SM, et al. The ACC/AHA 2013 guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular disease risk in adults: the good the bad and the uncertain: a comparison with ESC/EAS guidelines for the management of dyslipidaemias 2011. Eur Heart J. 2014;35:960–8.
Article
PubMed
Google Scholar
Singh S, Willig JH, Mugavero MJ, et al. Comparative effectiveness and toxicity of statins among HIV-infected patients. Clin Infect Dis. 2011;52:387–95.
Fransen R, Vergeer M, Stroes ES, Kastelein JJ. Combination statin-fibrate therapy: safety aspects. Diabetes Obes Metab. 2009;11:89–94.
Guyton JR, Bays HE. Safety considerations with niacin therapy. Am J Cardiol. 2007;99(Suppl):22–31C.
Preiss D, Seshasai D, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.
Cziraki MJ, Willey VJ, McKenney JM, et al. Statin safety: an assessment using an administrative claims database. Am J Cardiol. 2006;97:61C–8C.
Article
CAS
Google Scholar
Phan B, Dayspring TD, Toth PP. Ezetimibe therapy: mechanism of action and clinical update. Vasc Health Risk Manag. 2012;8:415–27.
CAS
PubMed
PubMed Central
Google Scholar
Savarese G, De Ferrari GM, Rosano GM, Perrone-Filardi P. Safety and efficacy of ezetimibe: a meta-analysis. Int J Cardiol. 2015;201:247–52.
Article
PubMed
Google Scholar
Wohl DA, Waters D, Simpson RJ Jr, Richard S, Schnell A, Napravnik S, et al. Ezetimibe alone reduces low-density lipoprotein cholesterol in HIV-infected patients receiving combination antiretroviral therapy. Clin Infect Dis. 2008;47:1105–8.
Article
CAS
PubMed
Google Scholar
Ambegaonkar BM, Tipping D, Polis AB, Tomassini JE, Tershakovec AM. Achieving goal lipid levels with ezetimibe plus statin add-on or switch therapy compared with doubling the statin dose. A pooled analysis. Atherosclerosis. 2014;237:829–37.
Article
CAS
PubMed
Google Scholar
Ballantyne CM, Blazing MA, King TR, Brady WE, Palmisano J. Efficacy and safety of ezetimibe co-administered with simvastatin compared with atorvastatin in adults with hypercholesterolemia. Am J Cardiol. 2004;93:1487–94.
Article
CAS
PubMed
Google Scholar
Morrone D, Weintraub WS, Toth PP, Hanson ME, Lowe RS, Lin J, et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis. 2012;223:251–61.
Article
CAS
PubMed
Google Scholar
Baigent C, Landray MJ, Reith C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (study of heart and renal protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossebø AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med. 2008;359:1343–56.
Article
PubMed
Google Scholar
Chow D, Chen H, Glesby MJ, et al. Short-term ezetimibe is well tolerated and effective in combination with statin therapy to treat elevated LDL cholesterol in HIV-infected patients. AIDS. 2009;23:2133–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeedi R, Johns K, Frohlich J, Bennett MT, Bondy G. Lipid lowering efficacy and safety of Ezetimibe combined with rosuvastatin compared with titrating rosuvastatin monotherapy in HIV-positive patients. Lipids Health Dis. 2015;14:57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stoekenbroek RM, Kastelein JJ, Huijgen R, et al. PCSK9 inhibition: the way forward in the treatment of dyslipidemia. BMC Med. 2015;13:258.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abifadel M, Rabès JP, Devillers M, et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009;30:520–9.
Article
CAS
PubMed
Google Scholar
Cohen JC, Boerwinkle E, Mosley TH Jr, et al. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.
Article
CAS
PubMed
Google Scholar
Navarese EP, Kolodziejczak M, Schulze V, et al. Effects of Proprotein Convertase Subtilisin/Kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann Intern Med. 2015;163:40–51.
Article
PubMed
Google Scholar
Zhang XL, Zhu QQ, Zhu L, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med. 2015;13:123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kastelein JJ, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003.
PubMed
PubMed Central
Google Scholar
Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385:341–50.
Article
CAS
PubMed
Google Scholar
Robinson JG, Farnier M, Krempf M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.
Article
CAS
PubMed
Google Scholar
Stroes E, Colquhoun D, Sullivan D, et al. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2541–8.
Article
CAS
PubMed
Google Scholar
Farnier M. Future lipid-altering therapeutic options targeting residual cardiovascular risk. Curr Cardiol Rep. 2016;18:65.
Article
PubMed
Google Scholar
Sabatine MS, Giugliano RP, Wiviott SD, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9.
Article
CAS
PubMed
Google Scholar
Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017. doi:10.1056/NEJMoa1615664.
Frick MH, Elo O, Haapa K, et al. Helsinki heart study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237–45.
Article
CAS
PubMed
Google Scholar
Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans affairs high-density lipoprotein cholesterol intervention trial study group. N Engl J Med. 1999;341:410–8.
Article
CAS
PubMed
Google Scholar
Miller J, Brown D, Amin J, Kent-Hughes J, Law M, Kaldor J, et al. A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia. AIDS. 2002;8(16):2195–200.
Article
Google Scholar
Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61.
Article
CAS
PubMed
Google Scholar
Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74.
Article
PubMed
Google Scholar
Enger C, Gately R, Ming EE, Niemcryk SJ, Williams L, McAfee AT. Pharmacoepidemiology safety study of fibrate and statin concomitant therapy. Am J Cardiol. 2010;106(11):1594–601.
Article
CAS
PubMed
Google Scholar
Gerber JG, Kitch DW, Fichtenbaum CJ, et al. Fish oil and fenofibrate for the treatment of hypertriglyceridemia in HIV-infected subjects on antiretroviral therapy: results of ACTG A5186. J Acquir Immune Defic Syndr. 2008;47:459–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi HD, Shin WG, Lee JY, Kang BC. Safety and efficacy of fibrate-statin combination therapy compared to fibrate monotherapy in patients with dyslipidemia: a meta-analysis. Vasc Pharmacol. 2015;65-66:23–30.
Article
CAS
Google Scholar
Paranandi A, Asztalos BF, Mangili A, et al. Efects of omega-3 fatty acids on triglycerides and high-density lipoprotein subprofiles in HIV-infected persons with hypertriglyceridemia. AIDS Res Hum Retrovir. 2014;30:800–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muñoz MA, Liu W, Delaney JA, et al. Comparative effectiveness of fish oil versus fenofibrate, gemfibrozil, and atorvastatin on lowering triglyceride levels among HIV-infected patients in routine clinical care. J Acquir Immune Defic Syndr. 2013;64:254–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rao A, D'Amico S, Balasubramanyam A, Maldonado M. Fenofibrate is effective in treating hypertriglyceridemia associated with HIV lipodystrophy. Am J Med Sci. 2004;327:315–8.
Article
PubMed
Google Scholar
Aberg JA, Zackin RA, Brobst SW, et al. A randomized trial of the efficacy and safety of fenofibrate versus pravastatin in HIV-infected subjects with lipid abnormalities: AIDS Clinical Trials Group study 5087. AIDS Res Hum Retrovir. 2005;21:757–67.
Article
CAS
PubMed
Google Scholar
Metkus TS, Timpone J, Leaf D, Bidwell Goetz M, Harris WS, Brown TT. Omega-3 fatty acid therapy reduces triglycerides and interleukin-6 in hypertriglyeridemic HIV patients. HIV Med. 2013;14:530–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson MH, Stein EA, Bays HE, et al. COMBination of prescription omega-3 with Simvastatin (COMBOS) investigators. Efficacy and tolerability of adding prescription omega-3 fatty acids 4 g/d to simvastatin 40 mg/d in hypertriglyceridemic patients: an 8-week, randomized, double-blind, placebo-controlled study. Clin Ther. 2007;29:1354–67.
Article
CAS
PubMed
Google Scholar
Durrington PN, Bhatnagar D, Mackness MI, et al. An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia. Heart. 2001;85:544–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen A, Calmy A, Schiffer VL, et al. Lipodystrophy and weight changes: data from the Swiss HIV cohort study, 2000-2006. HIV Med. 2008;9:142–50.
Article
CAS
PubMed
Google Scholar
Wohl D, Scherzer R, Heymsfield S, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 2008;48(1):44–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shlay JC, Bartsch G, Peng G, et al. Long-term body composition and metabolic changes in antiretroviral naive persons randomized to protease inhibitor, nonnucleoside reverse transcriptase inhibitor-, or protease inhibitor plus nonnucleoside reverse transcriptase inhibitor-based strategy. J Acquir Immune Defic Syndr. 2007;44:506–17.
Article
CAS
PubMed
Google Scholar
Falutz J, Allas S, Blot K, et al. Metabolic effects of a growth hormone-releasing factor in patients with HIV. N Engl J Med. 2007;357:2359–70.
Article
CAS
PubMed
Google Scholar
Falutz J, Mamputu JC, Potvin D, et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab. 2010;95:4291–304.
Article
CAS
PubMed
Google Scholar
Stanley TL, Falutz J, Marsolais C, et al. Reduction in visceral adiposity is associated with an improved metabolic profile in HIV-infected patients receiving tesamorelin. Clin Infect Dis. 2012;54(11):1642–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz JM, Mulligan K, Lee J, et al. Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab. 2002;87(2):942.
Article
CAS
PubMed
Google Scholar
Spooner LM, Olin JL. Tesamorelin: a growth hormone-releasing factor analogue for HIV-associated lipodystrophy. Ann Pharmacother. 2012;46:240–7.
Article
PubMed
CAS
Google Scholar
Mallon PW, Miller J, Cooper DA, et al. Prospective evaluation of the effects of antiretroviral therapy on body composition in HIV-1-infected men starting therapy. AIDS. 2003;17:971–9.
Article
CAS
PubMed
Google Scholar
Safrin S, Grunfeld C. Fat distribution and metabolic changes in patients with HIV infection. AIDS. 1999;13:2493–505.
Article
CAS
PubMed
Google Scholar
Finkelstein JL, Gala P, Rochford R, et al. HIV/AIDS and lipodystrophy: implications for clinical management in resource-limited settings. J Int AIDS Soc. 2015;18:19033.
Article
PubMed
PubMed Central
Google Scholar
Baril JG, Junod P, Leblanc R, et al. HIV-associated lipodystrophy syndrome: a review of clinical aspects. Can J Infect Dis Med Microbiol. 2005;16:233–43.
PubMed
PubMed Central
Google Scholar
Falutz J. HIV infection, body composition changes and related metabolic complications: contributing factors and evolving management strategies. Curr Opin Clin Nutr Metab Care. 2011;14:255–60.
Article
CAS
PubMed
Google Scholar
Scherzer R, Heymsfield SB, Lee D, et al. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection. AIDS. 2011;25:1405–14.
Article
PubMed
PubMed Central
Google Scholar
Miller KD, Jones E, Yanovski JA, et al. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet. 1998;351:871–5.
Lo JC, Mulligan K, Tai VW et al. “buffalo hump” in men with HIV-1 infection. Lancet. 1998 21; 351: 867-870.
Justman JE, Hoover DR, Shi Q, et al. Longitudinal anthropometric patterns among HIV-infected and HIV-uninfected women. J Acquir Immune Defic Syndr. 2008;47:312–9.
Article
PubMed
PubMed Central
Google Scholar
Study of Fat Redistribution and Metabolic Change in HIV Infection (FRAM). Fat distribution in women with HIV infection. J Acquir Immune Defic Syndr. 2006;42:562–71.
Article
Google Scholar
Van Harmelen V, Lönnqvist F, Thörne A, et al. Noradrenaline-induced lipolysis in isolated mesenteric, omental and subcutaneous adipocytes from obese subjects. Int J Obes Relat Metab Disord. 1997;21:972–9.
Article
PubMed
CAS
Google Scholar
Kino T, Gragerov A, Kopp JB, et al. The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid receptor. J Exp Med. 1999;189:51–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guaraldi G, Stentarelli C, Zona S, et al. HIV-associated lipodystrophy: impact of antiretroviral therapy. Drugs. 2013;73:1431–50.
Article
CAS
PubMed
Google Scholar
Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014;34:1820–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erlandson KM, Lake JE. Fat matters: understanding the role of adipose tissue in health in HIV infection. Curr HIV/AIDS Rep. 2016;13:20–30.
Article
PubMed
PubMed Central
Google Scholar
Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233:104–12.
Article
CAS
PubMed
Google Scholar
Orlando G, Guaraldi G, Zona S, et al. Ectopic fat is linked to prior cardiovascular events in men with HIV. J Acquir Immune Defic Syndr. 2012;59:494–7.
Article
PubMed
Google Scholar
Sattler FR, He J, Letendre S, et al. Abdominal obesity contributes to neurocognitive impairment in HIV-infected patients with increased inflammation and immune activation. J Acquir Immune Defic Syndr. 2015;68:281–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Heart Network. Diet, Physical Activity and Cardiovascular Disease Prevention in Europe. Brussels, Belguim: European Heart Network, 2011. http://www.ehnheart.org/publications/publications/publication/521-diet-physical-activity-and-cardiovascular-disease-prevention.html.
Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA. 2004;292:1433–9.
Article
PubMed
Google Scholar
Roman B, Carta L, Martinez-Gonzalez MA, Serra-Majem L. Effectiveness of the Mediterranean diet in the elderly. Clin Interv Aging. 2008;3:97e109.
Google Scholar
Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92:1189–96.
Article
CAS
PubMed
Google Scholar
Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. For the PREDIMED study investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.
Article
CAS
PubMed
Google Scholar
Gallien S, Braun J, Delaugerre C, et al. Efficacy and safety of raltegravir in treatment-experienced HIV-1-infected patients switching from enfuvirtide-based regimens: 48 week results of therandomized EASIER ANRS 138 trial. J Antimicrob Chemother. 2011;66:2099–106.
Article
CAS
PubMed
Google Scholar
Reliquet V, Chirouze C, Allavena C, et al. Nevirapine-raltegravir combination, an NRTI and PI/r sparing regimen, as maintenance antiretroviral therapy in virologically suppressed HIV-1-infected patients. Antivir Ther. 2014;19:117–23.
Article
CAS
PubMed
Google Scholar
Calcagno A, Montrucchio C, Capetti A, et al. Raltegravir plus Nevirapine as maintenance antiretroviral therapy in HIV-positive patients: safety. Efficacy and PharmacokineticsCurr HIV Res. 2016;14:54–60.
Article
CAS
Google Scholar
Trottier B, Lake JE, Logue K, et al. Dolutegravir/abacavir/lamivudine versus current ART in virally suppressed patients (STRIIVING): a 48-week, randomized, non-inferiority, open-label. Antivir Ther: Phase IIIb study; 2017 Apr 12.
Google Scholar
Molina JM, Cahn P, Grinsztejn B, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet. 2011;378(9787):238–46.
Article
CAS
PubMed
Google Scholar
Ciaffi L, Cavassini M, Genne D, et al. Switch to etravirine for HIV-positive patients receiving statin treatment: a prospective study. Eur J Clin Investig. 2015;45:720–30.
Article
CAS
Google Scholar
Banach M, Serban C, Sahebkar A, Mikhailidis DP, Ursoniu S, Ray KK, et al. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015;13:229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lo J, Lu MT, Ihenachor EJ, Wei J, Looby SE, Fitch KV, et al. Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomized, double-blind, placebo-controlled trial. Lancet HIV. 2015;2:e52–63.
Article
PubMed
PubMed Central
Google Scholar
Erlandson K, Jiang Y, Debanne S, Mc Comsay G. Rosuvastatin worsens insulin resistance in HIV-infected adults on antiretroviral treatment. Clin Infect Dis. 2015;61:1566–71.