Hamer DH, Darmstadt GL, Carlin JB, Zaidi AKM, Bs MB. Etiology of bacteremia in young infants in six countries. Pediatr Infect Dis J. 2015;34(1):1–8.
Article
Google Scholar
Okomo U, Akpalu ENK, le Doare K, Roca A, Cousens S, Jarde A, et al. Articles Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa : a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019;3099(19):1–16. https://doi.org/10.1016/S1473-3099(19)30414-1.
Article
Google Scholar
Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specifc mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–210.
Article
Google Scholar
Fleischmann C, Reichert F, Cassini A, Horner R, Harder T, Markwart R, et al. Global incidence and mortality of neonatal sepsis : a systematic review and meta- analysis. Arch Dis Child. 2021;106:1–8.
Article
Google Scholar
Popescu CR, Cavanagh MMM, Tembo B, Lufesi N, Goldfarb DM, Kissoon N, et al. Neonatal sepsis in low-income countries: epidemiology, diagnosis and prevention. Expert Rev Anti Infect Ther. 2020. https://doi.org/10.1080/14787210.2020.1732818.
Article
PubMed
Google Scholar
Dramowski A, Madide A, Bekker A. Neonatal nosocomial bloodstream infections at a referral hospital in a middle-income country: burden, pathogens, antimicrobial resistance and mortality. Paediatr Int Child Health. 2015;35(3):265–72.
Article
PubMed
Google Scholar
Medugu N, Iregbu K, Tam Pying I, Obaro S. Aetiology of neonatal sepsis in Nigeria, and relevance of Group b streptococcus: a systematic review. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0200350.
Article
PubMed
PubMed Central
Google Scholar
Sankar MJ. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ. 2019;1(364): k5314.
Google Scholar
Asante J, Amoako DG, Abia ALK, Somboro AM, Govinden U, Bester LA, et al. Review of clinically and epidemiologically relevant coagulase-negative staphylococci in Africa. Microb Drug Resist. 2020;26(8):951–70.
Article
CAS
PubMed
Google Scholar
Méric G, Mageiros L, Pensar J, Laabei M, Yahara K, Pascoe B, et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat Commun. 2018;9(1):1–11.
Article
CAS
Google Scholar
Mary Healy C, Palazzi DL, Edwards MS, Campbell JR, Baker CJ. Features of invasive staphylococcal disease in neonates. Pediatrics. 2004;114(4):953–61.
Article
PubMed
Google Scholar
Foka A, Chini V, Petinaki E, Kolonitsiou F, Anastassiou D, Dimitracopoulos G, et al. Clonality of slime-producing methicillin- resistant coagulase-negative staphylococci disseminated in the neonatal intensive care unit of a university hospital. Clin Microbiol Infect. 2006;12:1230–3.
Article
CAS
PubMed
Google Scholar
Cavanagh JP, Hjerde E, Holden MTG, Kahlke T, Klingenberg C, Flægstad T, et al. Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother. 2014;69(11):2920–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK, Smith PB, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev. 2012;88(SUPPL 2):1–13.
Google Scholar
Sah S, Bordoloi P, Vijaya D, Amarnath SK, Sheela Devi C, Indumathi VA, et al. Simple and economical method for identification and speciation of Staphylococcus epidermidis and other coagulase negative Staphylococci and its validation by molecular methods. J Microbiol Methods. 2018;149(May):106–19.
Article
CAS
PubMed
Google Scholar
Sands K, Carvalho MJ, Portal E, Thomson K, Dyer C, Akpulu C, et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat Microbiol. 2021;6(April):512–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
EUCAST. EUCAST V11: The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. 2021.
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32(2):292–4.
CAS
PubMed
Google Scholar
Seemann T. ABRicate [Internet]. https://github.com/tseemann/abricate
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44(D1):D694–7.
Article
CAS
PubMed
Google Scholar
Mcginnis S, Madden TL. BLAST : at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:20–5.
Article
CAS
Google Scholar
Seemann T. mlst, Github [Internet]. 2019. https://github.com/tseemann/mlst
Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Res. 2018;3:1–20.
Article
CAS
Google Scholar
Thomsen MCF, Ahrenfeldt J, Cisneros JLB, Jurtz V, Larsen MV, Hasman H, et al. A bacterial analysis platform: an integrated system for analysing bacterial whole genome sequencing data for clinical diagnostics and surveillance. PLoS ONE. 2016;11(6):1–14.
Article
CAS
Google Scholar
Bartels MD, Petersen A, Worning P, Nielsen JB, Larner-Svensson H, Johansen HK, et al. Comparing whole-genome sequencing with sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2014;52(12):4305–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J Antimicrob Chemother. 2021;76(1):101–9.
Article
CAS
PubMed
Google Scholar
International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of Staphylococcal Cassette Chromosome mec (SCC mec): Guidelines for Reporting Novel SCC mec Elements. J Antimicrob Chemother. 2009;53(12):4961–7.
Article
CAS
Google Scholar
Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA, Fedosejev A. Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. MBio. 2016;7(3):1–15.
Article
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Article
CAS
PubMed
Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Sequence analysis Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(July):3691–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0009490.
Article
PubMed
PubMed Central
Google Scholar
Seemann T. snippy: fast bacterial variant calling from NGS reads. [snippy] 2015. https://github.com/tseemann/snippy.
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43(3): e15.
Article
PubMed
CAS
Google Scholar
Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2(4): e000056.
PubMed
PubMed Central
Google Scholar
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seemann T. snp-dists [Internet]. https://github.com/tseemann/snp-dists. Accessed Dec 2018.
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick RR. Porechop v0.2.4 [Internet]. https://github.com/rrwick/Porechop. Accessed Nov 2018.
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):1–22.
Article
CAS
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016. https://doi.org/10.1186/s13059-016-0997-x.
Article
PubMed
PubMed Central
Google Scholar
Powers ME, Wardenburg JB. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 2014;10(2):10–3.
Article
CAS
Google Scholar
Url S, Society RS. Controlling the false discovery rate: a practical and powerful approach to multiple testing Yoav Benjamini; Yosef Hochberg Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57, No. 1. (1995), J R Statist Soc B 1995;57(1):289–300.
Nemeghaire S, Argudín MA, Feßler AT, Hauschild T, Schwarz S, Butaye P. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Vet Microbiol. 2014;171(3–4):342–56.
Article
PubMed
Google Scholar
Thomson K, Dyer C, Liu F, Sands K, Carvalho MJ, Barrell M, et al. Evaluating the roles of antibiotic resistance, drug target attainment, bacterial pathogenicity, virulence and antibiotic access and affordability in affecting outcomes in neonatal sepsis: an international microbiology and drug evaluation prospective study. Lancet Infect Dis. 2021. https://doi.org/10.1016/S1473-3099(21)00050-5.
Article
PubMed
PubMed Central
Google Scholar
Zea-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr. 2015;61(1):1–13.
Article
PubMed
PubMed Central
Google Scholar
Molina García A, Cross JH, Fitchett EJA, Kawaza K, Okomo U, Spotswood NE, et al. Infection prevention and care bundles addressing health care-associated infections in neonatal care in low-middle income countries: a scoping review. EClinicalMedicine. 2022;44:101259.
Article
PubMed
PubMed Central
Google Scholar
Fitzgerald FC, Zingg W, Chimhini G, Chimhuya S, Wittmann S, Brotherton H, et al. the impact of interventions to prevent neonatal healthcare-associated infections in low- and middle-income countries: a systematic review. Pediatr Infect Dis J. 2022;41(3):S26-35.
Article
PubMed
PubMed Central
Google Scholar
Ullah O, Khan A, Ambreen A, Ahmad I, Akhtar T, Grandapor AJ, et al. Antibiotic sensitivity pattern of bacterial isolates of neonatal septicemia in Peshawar, Pakistan. Arch Iran Med. 2016;19(12):866–9.
PubMed
Google Scholar
Jansen van Rensburg MJ, Eliya Madikane V, Whitelaw A, Chachage M, Haffejee S, Gay Elisha B. The dominant methicillin-resistant Staphylococcus aureus clone from hospitals in Cape Town has an unusual genotype: ST612. Clin Microbiol Infect. 2011;17(5):785–92.
Williamson DA, Roberts SA, Ritchie SR, Coombs GW, Fraser JD, Heffernan H. Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: rapid emergence of sequence type 5 (ST5)-SCCmec-IV as the dominant community-associated MRSA Clone. PLoS ONE. 2013;8(4):1–7.
Article
CAS
Google Scholar
Challagundla L, Reyes J, Rafiqullah I, Sordelli DO, Echaniz-Aviles G, Velazquez-Meza ME, et al. Phylogenomic classification and the evolution of Clonal complex 5 methicillin-resistant Staphylococcus aureus in the Western Hemisphere. Front Microbiol. 2018;9:1–14.
Article
Google Scholar
Teixeira MM, Araújo MC, Silva-Carvalho MC, Beltrame CO, Oliveira CCHB, Figueiredo AMS, et al. Emergence of clonal complex 5 (CC5) methicillin-resistant Staphylococcus aureus (MRSA) isolates susceptible to trimethoprim-sulfamethoxazole in a Brazilian hssospital. Braz J Med Biol Res. 2012;45(7):637–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawaguchiya M, Urushibara N, Yamamoto D, Yamashita T, Shinagawa M, Watanabe N, et al. Characterization of PVL/ACME-positive methicillin-resistant staphylococcus aureus (Genotypes ST8-MRSA-IV and ST5-MRSA-II) isolated from a university hospital in Japan. Microb Drug Resist. 2013;19(1):48–56.
Article
CAS
PubMed
Google Scholar
Kawaguchiya M, Urushibara N, Ghosh S, Kuwahara O, Morimoto S, Ito M, et al. Genetic diversity of emerging Panton-Valentine leukocidine/arginine catabolic mobile element (ACME)-positive ST8 SCCmec-IVa meticillinresistant Staphylococcus aureus (MRSA) strains and ACME-positive CC5 (ST5/ST764) MRSA strains in northern Japan. J Med Microbiol. 2013;62:1852–63.
Article
PubMed
Google Scholar
Gorwitz RJ. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and update. Pediatric Infect Dis J. 2008;27(10):925–6.
Article
Google Scholar
Strauß L, Stegger M, Akpaka PE, Alabi A, Breurec S, Coombs G, et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc Natl Acad Sci U S A. 2017;114(49):E10596–604.
Article
PubMed
PubMed Central
CAS
Google Scholar
Recker M, Laabei M, Toleman MS, Reuter S, Saunderson RB, Blane B, et al. Clonal differences in Staphylococcus aureus bacteraemia-associated mortality. Nat Microbiol. 2017;2(10):1381–8.
Article
CAS
PubMed
Google Scholar
Okomo U, Akpalu ENK, Le DK, Roca A, Cousens S, Jarde A, et al. Articles Aetiology of invasive bacterial infection and antimicrobial resistance in neonates in sub-Saharan Africa: a systematic review and meta-analysis in line with the STROBE-NI reporting guidelines. Lancet Infect Dis. 2019;3099(19):1–16.
Google Scholar
Tumuhamye J, Sommerfelt H, Bwanga F, Ndeezi G, Mukunya D, Napyo A, et al. Neonatal sepsis at Mulago national referral hospital in Uganda: etiology, antimicrobial resistance, associated factors and case fatality risk. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0237085.
Article
PubMed
PubMed Central
Google Scholar
Akindolire AE, Tongo O, Dada-Adegbola H, Akinyinka O. Etiology of early onset septicemia among neonates at the university college hospital, Ibadan, Nigeria. J Infect Dev Ctries. 2016;10(12):1338–44.
Article
CAS
PubMed
Google Scholar
Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W. The bacterial insertion sequence element is256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun. 2004;72(2):1210–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hossain B, Weber MW, Hamer DH, Hibberd PL, Ahmed A, Marzan M, et al. Classification of blood culture isolates into contaminants and pathogens on the basis of clinical and laboratory data. Pediatr Infect Dis J. 2016;35(5):S52–4.
Article
PubMed
Google Scholar
Ozkan H, Cetinkaya M, Koksal N, Celebi S, Hacimustafaoglu M. Culture-proven neonatal sepsis in preterm infants in a neonatal intensive care unit over a 7 year period: coagulase-negative Staphylococcus as the predominant pathogen. Pediatr Int. 2014;56(1):60–6.
Article
PubMed
Google Scholar
Lamba M, Sharma R, Sharma D, Choudhary M, Maheshwari RK. Bacteriological spectrum and antimicrobial susceptibility pattern of neonatal septicaemia in a tertiary care hospital of North India. J Matern Fetal Neonatal Med. 2016;29(24):3993–8.
CAS
PubMed
Google Scholar
Kohli-Kochhar R, Omuse G, Revathi G. A ten-year review of neonatal bloodstream infections in a tertiary private hospital in Kenya. J Infect Dev Ctries. 2011. https://doi.org/10.3855/jidc.1674.
Article
PubMed
Google Scholar
Madhaiyan M, Wirth J, Saravanan V. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcu. Int J Syst Evol Microbiol. 2020. https://doi.org/10.1099/ijsem.0.004498.
Article
PubMed
Google Scholar
Meservey A, Sullivan A, Wu C, Lantos PM. Staphylococcus sciuri peritonitis in a patient on peritoneal dialysis. Zoonoses Public Health. 2020;67(1):93–5.
Article
PubMed
Google Scholar
Koçoğlu E, Karabay O. Catheter associated Staphylococcus sciuri sepsis in a patient with acute myeloid leukemia. Mikrobiyol Bul. 2006;40(4):397–400.
PubMed
Google Scholar
Horri T, Suzuki Y, Kimura T, Kanno T, Maekawa M. Intravenous catheter-related septic shock caused by Staphylococcus sciuri and Escherichia vulneris. Scand J Infect Dis. 2001;33(12):930–2.
Article
Google Scholar
Shabayek S, Ferrieri P, Spellerberg B. Group B streptococcal colonization in African countries: prevalence, capsular serotypes, and molecular sequence types. Pathogens. 2021;10:1606. https://doi.org/10.3390/pathogens10121606.
Article
PubMed
PubMed Central
Google Scholar
Investigators of the Delhi Neonatal Infection Study (DeNIS) collaboration. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: a cohort study. Lancet Glob Health. 2016;4(10):e752–60. https://doi.org/10.1016/S2214-109X(16)30148-6.
Article
Google Scholar