UNAIDS. Fact sheet-Global HIV Statistics [Internet]. 2020 [cited 2020 Oct 11]. Available from: http://aidsinfo.unaids.org.
Ministry of Health. Consolidated Guidelines for the Prevention and Treatment of HIV and AIDS in Uganda [Internet]. MOH; 2020. Available from: https://elearning.idi.co.ug/pluginfile.php/5675/mod_page/content.
Gregson J, Tang M, Ndembi N, Hamers RL, Rhee S-Y, Marconi VC, et al. Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: a multicentre retrospective cohort study. Lancet Infect Dis. 2016;16:565–75.
Article
Google Scholar
Ssemwanga D, Lihana RW, Ugoji C, Abimiku A, Nkengasong J, Dakum P, et al. Update on HIV-1 acquired and transmitted drug resistance in Africa. AIDS Rev. 2015;17:3–20.
PubMed
Google Scholar
Aves T, Tambe J, Siemieniuk RA, Mbuagbaw L. Antiretroviral resistance testing in HIV‐positive people. Cochrane Database Syst Rev [Internet]. 2018 [cited 2020 Oct 12];2018. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6517236/.
UNAIDS. Understanding FastTrack Accelerating Action to End the AIDS Epidemic by 2030. 2015.
World Health Organization. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach [Internet]. 2021 update. Geneva: World Health Organization; 2021 [cited 2021 Aug 23]. Available from: https://apps.who.int/iris/handle/10665/342899.
Department of Health and Human Services. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV [Internet]. 2020 [cited 2020 Oct 11]. Available from: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/documents/AdultandAdolescentGL.pdf.
WHO. HIV Drug Resistance: Surveillance of HIV drug resistance in Adults receiving ART (Acquired HIV drug resistance) [Internet]. 2014. Available from: www.who.int.
The WHO. Surveillance of HIV drug resistance in adukts initiating antiretroviral therapy (Pre-treatment HIV drug resistance) [Internet]. WHO; 2014 [cited 2020 Oct 11]. Available from: https://apps.who.int/iris/bitstream/handle/10665/112802/9789241507196_eng.pdf;jsessionid=AAC44A20E97B74CF7A52D52829125A02?sequence=1.
Hirsch MS, Conway B, D’Aquila RT, Johnson VA, Brun-Vézinet F, Clotet B, et al. Antiretroviral drug resistance testing in adults with HIV infection: implications for clinical management. JAMA Am Med Assoc. 1998;279:1984–91.
Article
CAS
Google Scholar
Hirsch MS, Günthard HF, Schapiro JM, Brun-Vézinet F, Clotet B, Hammer SM, et al. Antiretroviral drug resistance testing in adult HIV-1 Infection: 2008 recommendations of an international AIDS Society–USA Panel. Clin Infect Dis. 2008;47:266–85.
Article
Google Scholar
Bbosa N, Ssemwanga D, Nsubuga RN, Salazar-Gonzalez JF, Salazar MG, Nanyonjo M, et al. Phylogeography of HIV-1 suggests that Ugandan fishing communities are a sink for, not a source of, virus from general populations. Sci Rep [Internet]. 2019;9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6355892/.
Abeler-Dörner L, Grabowski MK, Rambaut A, Pillay D, Fraser C. PANGEA-HIV 2: phylogenetics and networks for generalised epidemics in Africa. Curr Opin HIV AIDS. 2019;14:173–80.
Article
Google Scholar
Stanford HIV drug resistance database. Major HIV-1 Drug Resistance Mutations [Internet]. 2015 [cited 2017 Aug 29]. Available from: https://hivdb.stanford.edu/pages/download/resistanceMutations_handout.pdf.
World Health Organization. WHO HIVResNet HIV drug resistance Laboratory Operational Framework Second Edition [Internet]. 2021 update. Geneva: World Health Organization; 2021 [cited 2021 Aug 23]. Available from: https://apps.who.int/iris/handle/10665/343175.
Escaich S, Ritter J, Rougier P, Lepot D, Lamelin JP, Sepetjan M, et al. Plasma viraemia as a marker of viral replication in HIV-infected individuals. AIDS. 1991;5:1189–94.
Article
CAS
Google Scholar
Johannessen A, Trøseid M, Calmy A. Dried blood spots can expand access to virological monitoring of HIV treatment in resource-limited settings. J Antimicrob Chemother. 2009;64:1126–9.
Article
CAS
Google Scholar
Lofgren SM, Morrissey AB, Chevallier CC, Malabeja AI, Edmonds S, Amos B, et al. Evaluation of a dried blood spot HIV-1 RNA program for early infant diagnosis and viral load monitoring at rural and remote health care facilities. AIDS. 2009;23:2459–66.
Article
Google Scholar
Ouma KN, Basavaraju SV, Okonji JA, Williamson J, Thomas TK, Mills LA, et al. Evaluation of quantification of HIV-1 RNA viral load in plasma and dried blood spots by use of the semiautomated cobas amplicor assay and the fully automated cobas ampliprep/TaqMan assay, version 2.0, in Kisumu, Kenya. J Clin Microbiol. 2013;51:1208–18.
Article
CAS
Google Scholar
Youngpairoj AS, Masciotra S, Garrido C, Zahonero N, de Mendoza C, García-Lerma JG. HIV-1 drug resistance genotyping from dried blood spots stored for 1 year at 4°C. J Antimicrob Chemother. 2008;61:1217–20.
Article
CAS
Google Scholar
Parry CM, Parkin N, Diallo K, Mwebaza S, Batamwita R, DeVos J, et al. Field study of dried blood spot specimens for HIV-1 drug resistance genotyping. J Clin Microbiol. 2014;52:2868–75.
Article
CAS
Google Scholar
Salimo AT, Ledwaba J, Coovadia A, Abrams EJ, Technau K-G, Kuhn L, et al. The use of dried blood spot specimens for HIV-1 drug resistance genotyping in young children initiating antiretroviral therapy. J Virol Methods. 2015;223:30–2.
Article
CAS
Google Scholar
Greenman J, Roberts T, Cohn J, Messac L. Dried blood spot in the genotyping, quantification and storage of HCV RNA: a systematic literature review. J Viral Hepatitis. 2015;22:353–61.
Article
CAS
Google Scholar
Ziemniak C, Mengistu Y, Ruff A, Chen Y-H, Khaki L, Bedri A, et al. Use of dried-blood-spot samples and in-house assays to identify antiretroviral drug resistance in HIV-infected children in resource-constrained settings. J Clin Microbiol. 2011;49:4077–82.
Article
CAS
Google Scholar
Monleau M, Butel C, Delaporte E, Boillot F, Peeters M. Effect of storage conditions of dried plasma and blood spots on HIV-1 RNA quantification and PCR amplification for drug resistance genotyping. J Antimicrob Chemother. 2010;65:1562–6.
Article
CAS
Google Scholar
Ji H, Li Y, Liang B, Pilon R, MacPherson P, Bergeron M, et al. Pyrosequencing dried blood spots reveals differences in HIV drug resistance between treatment naïve and experienced patients. PLoS ONE. 2013;8:e56170.
Article
CAS
Google Scholar
Grüner N, Stambouli O, Ross RS. Dried blood spots—preparing and processing for use in immunoassays and in molecular techniques. J Vis Exp. 2015;52619.
Watera C, Ssemwanga D, Namayanja G, Asio J, Lutalo T, Namale A, et al. HIV drug resistance among adults initiating antiretroviral therapy in Uganda. J Antimicrob Chemother. 2021;76:2407–14.
Article
CAS
Google Scholar
Kiyaga C, Sendagire H, Joseph E, McConnell I, Grosz J, Narayan V, et al. Uganda’s new national laboratory sample transport system: a successful model for improving access to diagnostic services for early infant HIV diagnosis and other programs. PLoS ONE. 2013;8:e78609.
Article
Google Scholar
University of Michigan Medical School, Biomedical Research Core facilities. Interpretation of Sequencing Chromatograms | Sanger Sequencing/Fragment Analysis FAQs [Internet]. U-M Biomedical Research Core Facilities. 2020 [cited 2021 Aug 25]. Available from: https://brcf.medicine.umich.edu/cores/advanced-genomics/faqs/sanger-sequencing-faqs/interpretation-of-sequencing-chromatograms/.
Pollack TM, Duong HT, Truong PT, Pham TT, Do CD, Colby D. Sensitivity and specificity of two dried blood spot methods for HIV-1 viral load monitoring among patients in Hanoi, Vietnam. PLoS ONE. 2018;13: e0191411.
Article
Google Scholar
Kaleebu P, Kirungi W, Watera C, Asio J, Lyagoba F, Lutalo T, et al. Virological response and antiretroviral drug resistance emerging during antiretroviral therapy at three treatment centers in Uganda. PLoS ONE. 2015;10: e0145536.
Article
Google Scholar
Woods CK, Brumme CJ, Liu TF, Chui CK, Chu AL, Wynhoven B, Hall TA, Trevino C, Shafer RW, et al. Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J Clin Microbiol. 2012;50:1936–42.
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Liu TF, Shafer RW. Web resources for HIV type 1 genotypic-resistance test interpretation. Clin Infect Dis. 2006;42:1608–18.
Article
CAS
Google Scholar
Omooja J, Nannyonjo M, Sanyu G, Nabirye SE, Nassolo F, Lunkuse S, et al. Rates of HIV-1 virological suppression and patterns of acquired drug resistance among fisherfolk on first-line antiretroviral therapy in Uganda. J Antimicrob Chemother. 2019;74:3021–9.
Article
CAS
Google Scholar
Zhang G, DeVos J, Medina-Moreno S, Wagar N, Diallo K, Beard RS, et al. Utilization of dried blood spot specimens can expedite nationwide surveillance of HIV drug resistance in resource-limited settings. PLoS ONE. 2018;13:e0203296.
Article
Google Scholar
Zhang L, Phanuphak N, Henderson K, Nonenoy S, Srikaew S, Shattock AJ, et al. Scaling up of HIV treatment for men who have sex with men in Bangkok: a modelling and costing study. The Lancet HIV. 2015;2:e200–7.
Article
Google Scholar
Bertagnolio S, Soto-Ramirez L, Pilon R, Rodriguez R, Viveros M, Fuentes L, et al. HIV-1 drug resistance surveillance using dried whole blood spots. Antivir Ther. 2007;12:107.
Article
CAS
Google Scholar
Ssemwanga D, Asio J, Watera C, Nannyonjo M, Nassolo F, Lunkuse S, et al. Prevalence of viral load suppression, predictors of virological failure and patterns of HIV drug resistance after 12 and 48 months on first-line antiretroviral therapy: a national cross-sectional survey in Uganda. J Antimicrob Chemother. 2020;75:1280–9.
Article
CAS
Google Scholar
Hallack R, Doherty LE, Wethers JA, Parker MM. Evaluation of dried blood spot specimens for HIV-1 drug-resistance testing using the Trugene HIV-1 genotyping assay. J Clin Virol. 2008;41:283–7.
Article
CAS
Google Scholar
Johannessen A, Garrido C, Zahonero N, Naman E, de Mendoza C. HIV-1 drug resistance testing from dried blood spots collected in rural Tanzania using the ViroSeq HIV-1 genotyping system. J Antimicrob Chemother. 2011;66:260–4.
Article
CAS
Google Scholar
Rodriguez-Auad JP, Rojas-Montes O, Maldonado-Rodriguez A, Alvarez-Muñoz MaT, Muñoz O, Torres-Ibarra R, et al. Use of dried plasma spots for HIV-1 viral load determination and drug resistance genotyping in Mexican patients. BioMed Res Int. 2015;2015:1–9.
Article
Google Scholar
Rottinghaus EK, Ugbena R, Diallo K, Bassey O, Azeez A, DeVos J, et al. Dried blood spot specimens are a suitable alternative sample type for HIV-1 viral load measurement and drug resistance genotyping in patients receiving first-line antiretroviral therapy. Clin Infect Dis Oxford Academic. 2012;54:1187–95.
Article
CAS
Google Scholar
Dried blood spots for HIV‐1 drug resistance genotyping in decentralized settings in Senegal—Diouara—2014—Journal of Medical Virology—Wiley Online Library [Internet]. [cited 2020 Oct 16]. https://doi.org/10.1002/jmv.23778.
Masciotra S, Garrido C, Youngpairoj AS, McNulty A, Zahonero N, Corral A, et al. High concordance between HIV-1 drug resistance genotypes generated from plasma and dried blood spots in antiretroviral-experienced patients. AIDS. 2007;21:2503–11.
Article
Google Scholar
David S, Sachithanandham J, Jerobin J, Parasuram S, Kannangai R. Comparison of HIV-1 RNA level estimated with plasma and DBS samples: a pilot study from India (South). Indian J Med Microbiol. 2012;30:403–6.
Article
CAS
Google Scholar
Vidya M, Saravanan S, Rifkin S, Solomon SS, Waldrop G, Mayer KH, et al. Dried blood spots versus plasma for the quantitation of HIV-1 RNA using a real-Time PCR, m2000rt assay. J Virol Methods. 2012;181:177–81.
Article
CAS
Google Scholar
Kantor R, Delong A, Schreier L, Reitsma M, Kemboi E, Orido M, et al. HIV second-line failure and drug resistance at high- and low-level viremia in Western Kenya: AIDS. 2018;1.
Gonzalez-Serna A, Min JE, Woods C, Chan D, Lima VD, Montaner JSG, et al. Performance of HIV-1 drug resistance testing at low-level viremia and its ability to predict future virologic outcomes and viral evolution in treatment-naive individuals. Clin Infect Dis. 2014;58:1165–73.
Article
CAS
Google Scholar
Gupta S, Taylor T, Patterson A, Liang B, Bullard J, Sandstrom P, et al. A robust PCR protocol for HIV drug resistance testing on low-level viremia samples. Biomed Res Int. 2017;2017:1–6.
Google Scholar
Minchella PA, Chipungu G, Kim AA, Sarr A, Ali H, Mwenda R, et al. Specimen origin, type and testing laboratory are linked to longer turnaround times for HIV viral load testing in Malawi. PLoS ONE. 2017;12:e0173009.
Article
Google Scholar
Pannus P, Claus M, Gonzalez MMP, Ford N, Fransen K. Sensitivity and specificity of dried blood spots for HIV-1 viral load quantification: a laboratory assessment of 3 commercial assays. Medicine (Baltimore). 2016;95: e5475.
Article
Google Scholar