World Health Organization: Emergence of multi-drug resistant Neisseria gonorrhoeae –Threat of global rise in untreatable sexually transmitted infections. Geneva, Switzerland: World Health Organization; 2011.
Tapsall JW. Antimicrobial resistance in Neisseria gonorrhoeae. Clin Infect Dis. 2005;41 Suppl 4:263–68.
Article
Google Scholar
Ison CA, Deal C, Unemo M. Current and future options for gonorrhoea. Sex Transm Infect. 2013;89 Suppl 4:52–6.
Article
Google Scholar
Tapsall JW, Ndowa F, Lewis DA, Unemo M. Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther. 2009;7:821–34.
Article
PubMed
Google Scholar
Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution and future. Clin Microbiol Rev. 2014;27:587–613.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faruki H, Sparling PF. Genetics of resistance in a non-beta-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother. 1986;30:856–60.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arya OP, Rees E, Percival A, Alergant CD, Annels EH, Turner GC. Epidemiology and treatment of gonorrhoea caused by penicillinase-producing strains in Liverpool. Br J Vener Dis. 1978;54:28–35.
PubMed Central
CAS
PubMed
Google Scholar
Ashford WA, Golash RG, Henning VG. Penicillinase producing Neisseria gonorrhoeae. Lancet. 1976;ii:657–58.
Article
Google Scholar
Phillips I. Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet. 1976;ii:656–57.
Article
Google Scholar
Pagotto F, Aman AT, Ng LK, Yeung KH, Brett M, Dillon JA. Sequence analysis of the family of penicillinase-producing plasmids of Neisseria gonorrhoeae. Plasmid. 2000;43:24–34.
Article
CAS
PubMed
Google Scholar
Palmer HM, Leeming JP, Turner A. A multiplex polymerase chain reaction to differentiate β-lactamase plasmids of Neisseria gonorrhoeae. J Antimicrob Chemother. 2000;45:777–82.
Article
CAS
PubMed
Google Scholar
Gouby A, Bourg G, Ramuz M. Previously undescribed 6.6-kilobase R plasmid in penicillinase-producing Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1986;29:1095–97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brett M. A novel gonococcal β-lactamase plasmid. J Antimicrob Chemother. 1989;23:653–54.
Article
CAS
PubMed
Google Scholar
Müller EE, Fayemiwo SA, Lewis DA. Characterization of a novel β-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J Antimicrob Chemother. 2011;66:1514–17.
Article
PubMed
Google Scholar
Trembizki E, Buckley C, Lawrence A, Lahra M, Whiley D. Characterization of a novel Neisseria gonorrhoeae penicillinase-producing plasmid, Australia 2012. Antimicrob Agents Chemother. 2014;58:4984–85.
Article
PubMed Central
PubMed
Google Scholar
Fiorito S, Fernandez Cabo M, Granados P, Galarza P. Primer informe en la República Argentina de resistencia a penicilina en Neisseria gonorrhoeae mediada por el plásmido de 3,2 MDa (africano). Infect & Microbiol Clin. 1993;5:78–84.
Google Scholar
Dillon JA, Yeung KH. Beta-lactamase plasmids and chromosomally mediated antibiotic resistance in pathogenic Neisseria species. Clin Microbiol Rev. 1989;2(Suppl):125–33.
Google Scholar
Srifeungfung S, Roongpisuthipong A, Asavapiriyanont S, Lolekha R, Tribuddharat C, Lokpichart S, et al. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae in HIV-seropositive and gonococcal antimicrobial susceptibility: an update in Thailand. Jpn J Infect Dis. 2009;62:467–70.
CAS
PubMed
Google Scholar
Pasquali F, Kehrenberg C, Manfreda G, Schwarz S. Physical linkage of Tn3 and part of Tn1721 in a tetracycline and ampicillin resistance plasmid from Salmonella Typhimurium. J Antimicrob Chemother. 2005;55:562–65.
Article
CAS
PubMed
Google Scholar
Ohnishi M, Ono E, Shimuta K, Watanabe H, Okamura N. Identification of TEM-135 β-lactamase in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob Agents Chemother. 2010;54:3021–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muhammad I, Golparian D, Dillon JA, Johansson A, Ohnishi M, Sethi S, et al. Characterisation of bla
TEM-135 genes and types of β-lactamase plasmids in Neisseria gonorrhoeae – the prevalent and conserved bla
TEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect Dis. 2014;14:454–60.
Article
PubMed Central
PubMed
Google Scholar
Whiley D, Trembizki E, Buckley C, Freeman K, Lawrence A, Limnios A, et al. Penicillinase-producing plasmid types of Neisseria gonorrhoeae clinical isolates from Australia. Antimicrob Agents Chemother. 2014;58:7576–78.
Article
PubMed Central
PubMed
Google Scholar
Chen SC, Yin YP, Dai XQ, Yu RX, Han Y, Sun HH, et al. Prevalence and molecular epidemiological typing of penicillinase-producing Neisseria gonorrhoeae and their bla
TEM-135 gene variants in Nanjing China. Sex Transm Dis. 2013;40:872–76.
Article
CAS
PubMed
Google Scholar
Gianecini R, Oviedo C, Littvik A, Mendez E, Piccoli L, Montibello S, et al. Identification of TEM-135 β-lactamase in Neisseria gonorrhoeae Strains Carrying African and Toronto Plasmid in Argentina. Antimicrob Agents Chemother. 2015;59:717–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
World Health Organization: Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus. Geneva, Switzerland: World Health Organization; 2013.
Dillon JR, Nasim A, Nestmann ER. Recombinant DNA methodology. In: Dillon JR, Bezanson GS, Yeung K-H, editors. Basic Techniques. New York: John Wiley and Sons; 1985. p. 1–126.
Google Scholar
Dillon JA, Carballo M. Molecular epidemiology and novel combinations of auxotype, serovar, and plasmid content in tetracycline-resistant Neisseria gonorrhoeae isolated in Canada. Can J Microbiol. 1990;36:64–7.
Article
CAS
PubMed
Google Scholar
CLSI. Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically; Approved standard-ninth edition M07A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.
Google Scholar
Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall JW. Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J Antimicrob Chemother. 2009;63:1142–51.
Article
CAS
PubMed
Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement M100-S25. Wayne: CLSI; 2015.
Google Scholar
Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990;18:999–1005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cha RS, Zarbl H, Keohavong P, Thilly WG. Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl. 1992;2:14–20.
Article
CAS
PubMed
Google Scholar
Nakayama S, Tribuddharat C, Prombhul S, Shimuta K, Srifuengfung S, Unemo M, et al. Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok Thailand. Antimicrob Agents Chemother. 2012;56:916–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Speldooren V, Heym B, Labia R, Nicolas-Chanoine MH. Discriminatory detection of inhibitor-resistant β-Lactamases in Escherichia coli by single-strand conformation polymorphism-PCR. Antimicrob Agents Chemother. 1998;42:879–84.
PubMed Central
CAS
PubMed
Google Scholar
Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG. Rapid Sequence-Based Identification of Gonococcal Transmission Clusters in a Large Metropolitan Area. J Infect Dis. 2004;189:1497–505.
Article
CAS
PubMed
Google Scholar
Starnino S, GASP-LAC Working Group, Galarza P, Carvallo ME, Benzaken AS, Ballesteros AM, et al. Retrospective analysis of antimicrobial susceptibility trends (2000–2009) in Neisseria gonorrhoeae isolates from countries in Latin America and the Caribbean shows evolving resistance to ciprofloxacin, azithromycin and decreased susceptibility to ceftriaxone. Sex Transm Dis. 2012;39:813–21.
Article
CAS
PubMed
Google Scholar
Guía Ministerio de Salud 1994. Pautas para el diagnóstico y tratamiento de la sífilis y las supuraciones genitales. Normas Técnicas. Ministerio de Salud y Acción Social. Dirección de Epidemiologia, Dto. de SIDA y ETS, Ciudad Autónoma de Buenos Aires, Argentina; 1994. p. 21.
Sideraki V, Huang W, Palzkill T, Gilbert HF. A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001;98:283–88.
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Minasov G, Shoichet BK. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol. 2002;320:85–95.
Article
CAS
PubMed
Google Scholar
Arlet G, Goussard S, Courvalin P, Philippon A. Sequences of the genes for the TEM-20, TEM-21, TEM-22, and TEM-29 extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1999;43:969–71.
PubMed Central
CAS
PubMed
Google Scholar
Poyart C, Mugnier P, Quesne G, Berche P, Trieu-Cuot P. A novel extended-spectrum TEM-Type β-Lactamase (TEM-52) associated with decreased susceptibility to moxalactam in Klebsiella pneumoniae. Antimicrob Agents Chemother. 1998;42:108–13.
PubMed Central
CAS
PubMed
Google Scholar