Gomez R, Murray CK, Hospenthal DR, Cancio LC, Renz EM, Holcomb JB, et al. Causes of mortality by autopsy findings of combat casualties and civilian patients admitted to a burn unit. Journal of the American College of Surgeons. 2009;208(3):348–54.
Article
PubMed
Google Scholar
Eastridge BJ, Mabry RL, Seguin P, Cantrell J, Tops T, Uribe P, et al. Death on the battlefield (2001–2011): implications for the future of combat casualty care. The journal of trauma and acute care surgery. 2012;73(6 Suppl 5):S431–437.
Article
PubMed
Google Scholar
Kotwal RS, Montgomery HR, Kotwal BM, Champion HR, Butler Jr FK, Mabry RL, et al. Eliminating preventable death on the battlefield. Archives of surgery. 2011;146(12):1350–8.
Article
PubMed
Google Scholar
Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005;41(5):634–53.
Article
Google Scholar
Tribble DR, Rodriguez CJ, Weintrob AC, Shaikh F, Aggarwal D, Carson ML, et al. Geographic Factors Associated with the Presence of Mold: Potential Enviornmental Risk Factors for Combat-Trauma Related Invasive Fungal Wound Infections. Fort Lauderdale, FL: Military Health System Research Symposium; 2014.
Google Scholar
Warkentien T, Rodriguez C, Lloyd B, Wells J, Weintrob A, Dunne JR, et al. Invasive mold infections following combat-related injuries. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2012;55(11):1441–9.
Article
Google Scholar
Neblett Fanfair R, Benedict K, Bos J, Bennett SD, Lo YC, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. The New England journal of medicine. 2012;367(23):2214–25.
Article
PubMed
Google Scholar
Lloyd B, Weintrob AC, Rodriguez C, Dunne JR, Weisbrod AB, Hinkle M, et al. Effect of early screening for invasive fungal infections in U.S. service members with explosive blast injuries. Surgical infections. 2014;15(5):619–26.
Article
PubMed
PubMed Central
Google Scholar
Weintrob AC, Weisbrod AB, Dunne JR, Rodriguez CJ, Malone D, Lloyd BA, et al. Combat trauma-associated invasive fungal wound infections: epidemiology and clinical classification. Epidemiology and infection. 2015;143(1):214–24.
Article
PubMed
Google Scholar
Jang JY, Shim H, Lee YJ, Lee SH, Lee JG. Application of negative pressure wound therapy in patients with wound dehiscence after abdominal open surgery: a single center experience. Journal of the Korean Surgical Society. 2013;85(4):180–4.
Article
PubMed
PubMed Central
Google Scholar
Brown TS, Hawksworth JS, Sheppard FR, Tadaki DK, Elster E. Inflammatory response is associated with critical colonization in combat wounds. Surgical infections. 2011;12(5):351–7.
Article
PubMed
Google Scholar
Evans KN, Forsberg JA, Potter BK, Hawksworth JS, Brown TS, Andersen R, et al. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. Journal of orthopaedic trauma. 2012;26(11):e204–213.
Article
PubMed
Google Scholar
Forsberg JA, Elster EA, Andersen RC, Nylen E, Brown TS, Rose MW, et al. Correlation of procalcitonin and cytokine expression with dehiscence of wartime extremity wounds. The Journal of bone and joint surgery American volume. 2008;90(3):580–8.
Article
PubMed
Google Scholar
Hawksworth JS, Stojadinovic A, Gage FA, Tadaki DK, Perdue PW, Forsberg J, et al. Inflammatory biomarkers in combat wound healing. Annals of surgery. 2009;250(6):1002–7.
Article
PubMed
Google Scholar
Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, et al. Metalloproteinase expression is associated with traumatic wound failure. The Journal of surgical research. 2010;159(2):633–9.
Article
CAS
PubMed
Google Scholar
Hourigan LA, Linfoot JA, Chung KK, Dubick MA, Rivera RL, Jones JA, et al. Loss of protein, immunoglobulins, and electrolytes in exudates from negative pressure wound therapy. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition. 2010;25(5):510–6.
Article
Google Scholar
Lambros MP, Abbas SA, Bourne DW. New high-performance liquid chromatographic method for amphotericin B analysis using an internal standard. Journal of chromatography B, Biomedical applications. 1996;685(1):135–40.
Article
CAS
PubMed
Google Scholar
Gordien JB, Pigneux A, Vigouroux S, Tabrizi R, Accoceberry I, Bernadou JM, et al. Simultaneous determination of five systemic azoles in plasma by high-performance liquid chromatography with ultraviolet detection. Journal of pharmaceutical and biomedical analysis. 2009;50(5):932–8.
Article
CAS
PubMed
Google Scholar
Tang HJ, Chen CC, Cheng KC, Wu KY, Lin YC, Zhang CC, et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2013;57(11):5717–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrobial agents and chemotherapy. 2002;46(3):834–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrobial agents and chemotherapy. 2002;46(3):828–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavridou E, Bruggemann RJ, Melchers WJ, Verweij PE, Mouton JW. Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a murine model of disseminated aspergillosis. Antimicrobial agents and chemotherapy. 2010;54(11):4758–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaller MA, Messer SA, Hollis RJ, Jones RN, Group SP. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program. Antimicrobial agents and chemotherapy 2002. 2000;46(4):1032–7.
Article
Google Scholar
Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S, Machouart M, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. Journal of clinical microbiology. 2012;50(1):66–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paolino KM, Henry JA, Hospenthal DR, Wortmann GW, Hartzell JD. Invasive fungal infections following combat-related injury. Military medicine. 2012;177(6):681–5.
Article
PubMed
Google Scholar
Andermahr J, Helling HJ, Rehm KE, Koebke Z. The vascularization of the os calcaneum and the clinical consequences. Clinical orthopaedics and related research. 1999;363:212–8.
Article
PubMed
Google Scholar
Inselmann G, Inselmann U, Heidemann HT. Amphotericin B and liver function. European journal of internal medicine. 2002;13(5):288–92.
Article
CAS
PubMed
Google Scholar
Kim DY, Park HJ, Lee YJ. Factors affecting voriconazole plasma concentrations in patients with invasive fungal infections. International journal of clinical pharmacology and therapeutics. 2014;52(3):209–16.
Article
CAS
PubMed
Google Scholar
Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clinical pharmacokinetics. 2006;45(7):649–63.
Article
CAS
PubMed
Google Scholar
Wang T, Zhu H, Sun J, Cheng X, Xie J, Dong H, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrobial Agents. 2014;44(5):436–42.
Article
CAS
Google Scholar
Hahm G, Glaser JJ, Elster EA. Biomarkers to predict wound healing: the future of complex war wound management. Plastic and reconstructive surgery. 2011;127 Suppl 1:21S–6S.
Article
CAS
PubMed
Google Scholar
Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clinical pharmacokinetics. 2011;50(2):99–110.
Article
CAS
PubMed
Google Scholar