Dubey JP, Su C: Population biology of Toxoplasma gondii: what’s out and where did they come from. Memórias do Instituto Oswaldo Cruz. 2009, 104 (2): 190-195. 10.1590/S0074-02762009000200011.
Article
CAS
PubMed
Google Scholar
Dubey JP: The history of Toxoplasma gondii–the first 100 years. J Eukaryot Microbiol. 2008, 55 (6): 467-475. 10.1111/j.1550-7408.2008.00345.x.
Article
PubMed
Google Scholar
Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet. 2004, 363 (9425): 1965-1976. 10.1016/S0140-6736(04)16412-X.
Article
CAS
PubMed
Google Scholar
Robert-Gangneux F, Darde ML: Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012, 25 (2): 264-296. 10.1128/CMR.05013-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luft BJ, Hafner R, Korzun AH, Leport C, Antoniskis D: Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1993, 329 (14): 995-1000. 10.1056/NEJM199309303291403.
Article
CAS
PubMed
Google Scholar
Afonso C, Paixão VB, Costa RM: Chronic Toxoplasma infection modifies the structure and the risk of host behavior. PLoS One. 2012, 7 (3): e32489 p-
Article
Google Scholar
Dass SA, Vasudevan A, Dutta D, Soh LJ, Sapolsky RM: Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS One. 2011, 6 (11): e27229 p-
Article
Google Scholar
Haroon F, Händel U, Angenstein F, Goldschmidt J, Kreutzmann P: Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One. 2012, 7 (4): e35516 p-
Article
Google Scholar
Bhopale GM: Development of a vaccine for toxoplasmosis: current status. Microbes and Infection. 2003, 5 (5): 457-462. 10.1016/S1286-4579(03)00048-0.
Article
CAS
PubMed
Google Scholar
Hiszczynska-Sawicka E, Holec-Gasior L, Kur J: DNA vaccines and recombinant antigens in prevention of Toxoplasma gondii infections—current status of the studies. Wiadomości Parazytologiczne. 2009, 55 (2): 125-139.
PubMed
Google Scholar
Liu Q, Singla LD, Zhou H: Vaccines against Toxoplasma gondii: status, challen ges and future directions. Hum Vaccin Immunother. 2012, 8 (9): 1305-1308. 10.4161/hv.21006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett AJ, Kirschke H: Cathepsin B, Cathepsin H, and Cathepsin L. Methods Enzymol. 1981, 80: 535-561.
Article
CAS
PubMed
Google Scholar
Amuthan G, Biswas G, Zhang SY, Klein-Szanto A, Vijayasarathy C: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 2001, 20 (8): 1910-1920. 10.1093/emboj/20.8.1910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA: Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Investig. 2000, 106 (9): 1127-1137. 10.1172/JCI9914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dou Z, Carruthers VB: Cathepsin proteases in Toxoplasma gondii. Advances in Experimental Medicine and Biology. 2011, 712: 49-61. 10.1007/978-1-4419-8414-2_4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Que X, Ngo H, Lawton J, Gray M, Liu Q: The cathepsin B of Toxoplasma gondii, toxopain-1, is critical for parasite invasion and rhoptry protein processing. J Biol Chem. 2002, 277 (28): 25791-25797. 10.1074/jbc.M202659200.
Article
CAS
PubMed
Google Scholar
Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB: Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol. 2010, 76 (6): 1340-1357. 10.1111/j.1365-2958.2010.07181.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda K, Pace DA, Cintron R, Rodrigues JC, Fang J: Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol. 2010, 76 (6): 1358-1375. 10.1111/j.1365-2958.2010.07165.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang R, Que X, Hirata K, Brinen LS, Lee JH: The cathepsin L of Toxoplasma gondii (TgCPL) and its endogenous macromolecular inhibitor, toxostatin. Mol Biochem Parasitol. 2009, 164 (1): 86-94. 10.1016/j.molbiopara.2008.11.012.
Article
CAS
PubMed
Google Scholar
Harper JM, Huynh MH, Coppens I, Parussini F, Moreno S: A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. Molecular Biology of the Cell. 2006, 17 (10): 4551-4563. 10.1091/mbc.E06-01-0064.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Hajj H, Papoin J, Cérède O, Garcia-Réguet N, Soête M: Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryotic Cell. 2008, 7 (6): 1019-1028. 10.1128/EC.00413-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabenau KE, Sohrabi A, Tripathy A, Reitter C, Ajioka JW: TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Mol Microbiol. 2001, 41 (3): 537-547. 10.1046/j.1365-2958.2001.02513.x.
Article
CAS
PubMed
Google Scholar
Brydges SD, Sherman GD, Nockemann S, Loyens A, Däubener W: Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. Mol Biochem Parasitol. 2000, 111 (1): 51-66. 10.1016/S0166-6851(00)00296-6.
Article
CAS
PubMed
Google Scholar
Que X, Wunderlich A, Joiner KA, Reed SL: Toxopain-1 is critical for infection in a novel chicken embryo model of congenital toxoplasmosis. Infect Immun. 2004, 72 (5): 2915-2921. 10.1128/IAI.72.5.2915-2921.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teo CF, Zhou XW, Bogyo M, Carruthers VB: Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother. 2007, 51 (2): 679-688. 10.1128/AAC.01059-06.
Article
CAS
PubMed
Google Scholar
Larson ET, Parussini F, Huynh MH, Giebel JD, Kelley AM: Toxoplasma gondii cathepsin l is the primary target of the invasion inhibitory compound LHVS. J Biol Chem. 2009, 284 (39): 26839-26850. 10.1074/jbc.M109.003780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Faraggi E, Zhou Y, Ruan J, Kurgan L: BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One. 2012, 7 (6): e40104 p-
Article
Google Scholar
Van Regenmortel MH: What is a B-cell epitope?. Methods in Molecular Biology. 2009, 524: 3-20. 10.1007/978-1-59745-450-6_1.
Article
CAS
PubMed
Google Scholar
Tong JC, Tammi MT: Prediction of protein allergenicity using local description of amino acid sequence. Front Biosci. 2008, 13: 6072-6078.
Article
CAS
PubMed
Google Scholar
Carter JM, Loomis-Price L: B cell epitope mapping using synthetic peptides. Current Protoc Immunol. 2004, 10.1002/0471142735.im0904s60. Chapter 9:Unit 9.4
Google Scholar
Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157 (1): 105-132. 10.1016/0022-2836(82)90515-0.
Article
CAS
PubMed
Google Scholar
Welling GW, Weijer WJ, van der Zee R, Welling-Wester S: Prediction of sequential antigenic regions in proteins. FEBS Lett. 1985, 188 (2): 215-218. 10.1016/0014-5793(85)80374-4.
Article
CAS
PubMed
Google Scholar
Subramani A, Floudas CA: Structure prediction of loops with fixed and flexible stems. The Journal of Physical Chemistry. B. 2012, 116 (23): 6670-6682. 10.1021/jp2113957.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gershoni JM, Stern B, Denisova G: Combinatorial libraries, epitope structure and the prediction of protein conformations. Immunol Today. 1997, 18 (3): 108-110. 10.1016/S0167-5699(97)01024-4.
Article
CAS
PubMed
Google Scholar
El-Kady IM: T-cell immunity in human chronic toxoplasmosis. J Egypt Soc Parasitol. 2011, 41 (1): 17-28.
PubMed
Google Scholar
Bhasin M, Lata S, Raghava GP: Searching and mapping of T-cell epitopes, MHC binders, and TAP binders. Methods in Molecular Biology. 2007, 409: 95-112. 10.1007/978-1-60327-118-9_6.
Article
CAS
PubMed
Google Scholar
Vider-Shalit T, Louzoun Y: MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides. J Immunol Methods. 2011, 374 (1–2): 43-46.
Article
CAS
PubMed
Google Scholar
Zhou H, Min J, Zhao Q, Gu Q, Cong H: Protective immune response against Toxoplasma gondii elicited by a recombinant DNA vaccine with a novel genetic adjuvant. Vaccine. 2012, 30 (10): 1800-1806. 10.1016/j.vaccine.2012.01.004.
Article
CAS
PubMed
Google Scholar
Cui X, Lei T, Yang D, Hao P, Li B, Liu Q: Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine. 2012, 30 (13): 2282-2287. 10.1016/j.vaccine.2012.01.073.
Article
CAS
PubMed
Google Scholar
Min J, Qu D, Li C, Song X, Zhao Q: Enhancement of protective immune responses induced by Toxoplasma gondii dense granule antigen 7 (GRA7) against toxoplasmosis in mice using a prime-boost vaccination strategy. Vaccine. 2012, 30 (38): 5631-5636. 10.1016/j.vaccine.2012.06.081.
Article
CAS
PubMed
Google Scholar
Constant S, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K: Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. The Journal of Experimental Medicine. 1995, 182 (5): 1591-1596. 10.1084/jem.182.5.1591.
Article
CAS
PubMed
Google Scholar
Chaturvedi P, Yu Q, Southwood S, Sette A, Singh B: Peptide analogs with different affinites for MHC alter the cytokine profile of T helper cells. Int Immunol. 1996, 8 (5): 745-755. 10.1093/intimm/8.5.745.
Article
CAS
PubMed
Google Scholar
Romano P, Giugno R, Pulvirenti A: Tools and collaborative environments for bioinformatics research. Briefings in Bioinformatics. 2011, 12 (6): 549-561. 10.1093/bib/bbr055.
Article
PubMed
PubMed Central
Google Scholar
Martin DM, Berriman M, Barton GJ: GOtcha: a new method for prediction of protein function assessed by the annotation of seven genomes. BMC Bioinforma. 2004, 5: 178-10.1186/1471-2105-5-178.
Article
Google Scholar
Bai Y, He S, Zhao G, Chen L, Shi N, Zhou H, Cong H, Zhao Q, Zhu XQ: Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Exp Parasitol. 2012, 132 (4): 458-464. 10.1016/j.exppara.2012.09.015.
Article
CAS
PubMed
Google Scholar
Mannie MD: Do holes in the T-cell repertoire have a center-surround regulatory structure? A rationale for the bifurcation of the Th1 and Th2 pathways of differentiation. Medical Hypotheses. 1997, 8 (3): 261-265.
Article
Google Scholar
Schaeffer EB, Sette A, Johnson DL, Bekoff MC, Smith JA, Grey HM, Buus S: Relative contribution of “determinant selection” and “holes in the T-cell repertoire” to T-cell responses. Proc Natl Acad Sci USA. 1989, 86 (12): 4649-4653. 10.1073/pnas.86.12.4649.
Article
CAS
PubMed
PubMed Central
Google Scholar