In this study, we estimated excess rates of mortality or hospitalizations attributable to influenza in different periods (pre-SARS, post-SARS, and post-pandemic) for two subtropical cities Hong Kong and Brisbane. We hypothesized that the influenza disease burden decreased more, or increased less, in Hong Kong than in Brisbane since 2003, because the uptake rate of influenza and pneumococcal vaccines increased more markedly in Hong Kong than in Brisbane during the same period. Kwong et al. [10] compared the relative change of disease burden in Ontario, where a universal influenza vaccination program was launched, to that in other Canadian provinces without such a policy. They found that influenza-associated mortality fell in Ontario and other provinces, but a larger reduction occurred in Ontario. In this study, we found that excess rates of IHD mortality decreased more from the pre-SARS to the post-SARS period in Hong Kong than in Brisbane, but with regard to the other mortality outcomes, excess rates increased more in Hong Kong. With respect to hospitalization in the post-SARS period, significantly lower excess rates were only found for CRD in Hong Kong. P&I and COPD hospitalization rates increased in both cities, but to a lesser extent in Hong Kong.
Many countries have recommended annual influenza vaccination or providing subsidy programs to the older population [18]. However, due to ethical concerns, a large body of knowledge on the effectiveness of influenza vaccine in the older population has been derived from observational studies, as few randomized controlled trials have been conducted in this high-risk population. A review by Goodwin et al. found that seroprotection and seroconversion achieved in the older population after vaccination was only 25–50% of vaccine response in younger adults [19]. A Cochrane review concluded that influenza vaccines were of limited effects, which could probably be explained by weak antibody response in the older population [6]; however, in a recent reanalysis using the same data, Walter et al. made the opposite conclusion [20]. They estimated that influenza vaccine resulted in a 30% reduction in complications after influenza infections, 40% in influenza-like illnesses, and 50% in laboratory confirmed influenza infections, specifically during influenza epidemics. However, there is still an on-going debate on vaccine effectiveness in the older population. Our findings add some evidence of a decrease, or a slow increase, in influenza-associated disease burden among the older population, following a marked increase in influenza vaccine coverage at the population level. However, it should be noted that this effect could have been partially caused by an increase of pneumococcal vaccination at the same time. Given that the effectiveness of influenza vaccine is affected by many factors including pre-existing immunity, antigenic shift, and underlying condition, it is not surprising that we failed to find consistent and significant estimates. This also highlights the challenges of evaluating the benefits of vaccination at the population level, even in the most susceptible older populations.
A higher disease burden was found in both Hong Kong and Brisbane after 2003, which was consistent with the findings of our previous studies and others [21, 22]. The potential explanation could be that H3N2 was more often predominant after 2003 and this subtype has been found associated with higher disease burden than H1N1 and B. The point estimates of RRs were sensitive to modeling parameters, and most had wide confidence intervals. This could be due to only a relatively small proportion of deaths or hospitalizations attributable to influenza. According to our previous studies, each year influenza is associated with nearly 1000 deaths and 10,000 hospitalizations in Hong Kong, accounting for only 3 and 1% of annual total deaths and hospitalizations, respectively [22,23,24,25]. Negative estimates of excess rates were occasionally derived from some disease outcomes, making it difficult to assess the relative increase/decrease between two cities. Relatively small counts in Brisbane could be the reason why we obtained extremely large or small point estimates for the post-SARS RR of CRD hospitalizations and the post-pandemic RR of stroke mortality in Brisbane; hence, these RRs need to be interpreted with caution. Unfortunately, good quality mortality, hospitalization, influenza surveillance and vaccination data are available in few subtropical countries/regions. Nevertheless, this study is the first to investigate the effectiveness of influenza and pneumococcal vaccination at the population level in warm climates, to our best knowledge.
There are several limitations in this study. First, ecological fallacy is unavoidable given the ecological study design. Individual vaccination status of those who have died or been hospitalized is unknown and the outcome variables are not specific to influenza. Nevertheless, we have used a previously validated modeling approach to estimate disease burden associated with influenza. Second, we assume that circulating influenza strains and pre-exisitng immunity at the population level are similar between Hong Kong and Brisbane. Therefore, a relative decrease (or less of an increase) in influenza-associated disease burden could reflect the effectiveness of influenza vaccination in terms of reducing adverse outcomes after influenza infections. This assumption may not hold, but there is also no strong evidence against it. Third, only two to five years of data were included in each study period, because influenza virology and hospitalization data prior to 2000 were not available in Hong Kong or Brisbane. Our model obtained some unstable points estimates, especially in the pre-SARS period, which could be due to the short time series and low counts. Last but not least, although we have carefully adjusted for seasonal trends, temperatures, and humidity in our models, there are many confounding factors that remain unadjusted for in this study, such as the prevalence of underlying condition, and difference in health-seeking behaviors between two older populations.
In conclusion, we found some but limited evidence that markedly increased rates of influenza and pneumococcal vaccination among the Hong Kong older people did lead to a reduction in their influenza disease burden. However, furture cohort studies with individual data are warranted to provide stronger evidence to support the promotion of influenza vaccination among the older population.