Carding SR, Egan PJ. [Gamma][delta] T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–45.
Article
CAS
Google Scholar
Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science. 1998;279(5357):1737–40.
Article
CAS
Google Scholar
Chen ZW, Letvin NL. Vγ2Vδ2+ T cells and anti-microbial immune responses. Microbes Infect. 2003;5(6):491–8.
Article
Google Scholar
Dieli F, Sireci G, Caccamo N, Di Sano C, Titone L, Romano A, et al. Selective depression of interferon-γ and Granulysin production with increase of proliferative response by Vγ9/Vδ2 T cells in children with tuberculosis. J Infect Dis. 2002;186(12):1835–9.
Article
CAS
Google Scholar
Poccia F, Battistini L, Cipriani B, Mancino G, Martini F, Gougeon ML, et al. Phosphoantigen-reactive Vγ9Vδ2 T lymphocytes suppress in vitro human immunodeficiency virus type 1 replication by cell-released antiviral factors including CC chemokines. J Infect Dis. 1999;180(3):858–61.
Article
CAS
Google Scholar
Poccia F, Agrati C, Montesano C, Martini F, Pauza C, Fisch P, et al. Innate T-cell immunity in HIV infections: the role of Vg9Vd2 T lymphocytes. Curr Mol Medic. 2002;2(8):769–81.
Article
CAS
Google Scholar
Le Roy GMFA, JP FM, JP CEHJF, Helluin O, Fukushima N, Bouchart FZC, et al. Similarity of expression of activation markers and CD28 on gamma delta and alpha beta-receptor T cells in HIV infection. Clin Immunol Immunopathol. 1996;79(2):189–93.
Article
Google Scholar
Hinz T, Wesch D, Friese K, Reckziegel A, Arden B, Kabelitz D. T cell receptor γδ repertoire in HIV-1-infected individuals. Eur J Immunol. 1994;24(12):3044–9.
Article
CAS
Google Scholar
Poles MA, Barsoum S, Yu W, Yu J, Sun P, Daly J, et al. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood γδ T cells despite suppressive therapy. J Virol. 2003;77(19):10456–67.
Article
CAS
Google Scholar
Li H, Peng H, Ma P, Ruan Y, Su B, Ding X, et al. Association between Vγ2Vδ2 T cells and disease progression after infection with closely related strains of HIV in China. Clin Infect Dis. 2008;46(9):1466–72.
Article
CAS
Google Scholar
Agrati C, D’Offizi G, Gougeon ML, Malkovsky M, Sacchi A, Casetti R, et al. Innate gamma/Delta T-cells during HIV infection: Terra relatively incognita in novel vaccination strategies? AIDS Rev. 2011;13:3–12.
PubMed
Google Scholar
Boullier S, Cochet M, Poccia F, Gougeon ML. CDR3-independent gamma delta V delta 1+ T cell expansion in the peripheral blood of HIV-infected persons. J Immunol. 1995;154(3):1418.
CAS
PubMed
Google Scholar
Ito M, Kojiro N, Ikeda T, Ito T, Funada J, Kokubu T. Increased proportions of peripheral blood γδ T cells in patients with pulmonary tuberculosis. Chest. 1992;102(1):195–7.
Article
CAS
Google Scholar
Rojas RE, Chervenak KA, Thomas J, Morrow J, Nshuti L, Zalwango S, et al. Vδ2+ γδ T cell function in Mycobacterium tuberculosis– and HIV-1–positive patients in the United States and Uganda: application of a whole-blood assay. J Infect Dis. 2005;192(10):1806–14.
Article
CAS
Google Scholar
Baliko Z, Szereday L, Szekeres-Bartho J. Gamma/delta T lymphocytes in Mycobacterium tuberculosis infection. Thorax. 1997;52(4):375–7.
Article
CAS
Google Scholar
Dieli F, Sireci G, Di Sano C, Romano A, Titone L, Di Carlo P, et al. Ligand-specific αβ and γδ T cell responses in childhood tuberculosis. J Infect Dis. 2000;181(1):294–301.
Article
CAS
Google Scholar
Wesch D, Hinz T, Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals. Int Immunol. 1998;10(8):1067–75.
Article
CAS
Google Scholar
Rossol R, Dobmeyer JM, Dobmeyer TS, Klein SA, Rossol S, Wesch D, et al. Increase in Vδ1+ γδ T cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. Br J Haematol. 1998;100(4):728–34.
Article
CAS
Google Scholar
Li B, Rossman MD, Imir T, Oner-Eyuboglu AF, Lee CW, Biancaniello R, et al. Disease-specific changes in gammadelta T cell repertoire and function in patients with pulmonary tuberculosis. J Immunol. 1996;157(9):4222–9.
CAS
PubMed
Google Scholar
Carvalho A, Matteelli A, Airo P, Tedoldi S, Casalini C, Imberti L, et al. γδ T lymphocytes in the peripheral blood of patients with tuberculosis with and without HIV co-infection. Thorax. 2002;57(4):357.
Article
CAS
Google Scholar
Ruiz P, Geraldino N. Peripheral γδ T-cell population in HIV-infected individuals with mycobacterial infection. Cytometry. 1995;22(3):211–6.
Article
CAS
Google Scholar
Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852.
Article
Google Scholar
Poggi A, Carosio R, Fenoglio D, Brenci S, Murdaca G, Setti M, et al. Migration of Vδ1 and Vδ2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1–infected patients: competition by HIV-1 tat. Blood. 2004;103(6):2205–13.
Article
CAS
Google Scholar
Li Z, Li W, Li N, Jiao Y, Chen D, Cui L, et al. γδ T cells are involved in acute HIV infection and associated with AIDS progression. PLoS One. 2014;9(9):e106064.
Article
Google Scholar
Cimini E, Agrati C, D’Offizi G, Vlassi C, Casetti R, Sacchi A, et al. Primary and chronic HIV infection differently modulates mucosal Vδ1 and Vδ2 T-cells differentiation profile and effector functions. PLoS One. 2015;10(6):e0129771.
Article
Google Scholar
Bordon J, Evans PS, Propp N, Davis CE, Redfield RR, Pauza CD. Association between longer duration of HIV-suppressive therapy and partial recovery of the Vγ2 T cell receptor repertoire. J Infect Dis. 2004;189(8):1482–6.
Article
CAS
Google Scholar
Martini F, Poccia F, Goletti D, Carrara S, Vincenti D, D’Offizi G, et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vγ9Vδ2 T cells in chronically infected patients undergoing structured treatment interruption. J Infect Dis. 2002;186(6):847–50.
Article
Google Scholar
Imlach S, Leen C, Bell JE, Simmonds P. Phenotypic analysis of peripheral blood γδ T lymphocytes and their targeting by human immunodeficiency virus type 1 in vivo. Virology. 2003;305(2):415–27.
Article
CAS
Google Scholar
Li H, Chaudry S, Poonia B, Shao Y, Pauza CD. Depletion and dysfunction of Vγ2Vδ2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol Immunol. 2013;10(1):42.
Article
Google Scholar
Cummings J-S, Cairo C, Armstrong C, Davis CE, Pauza CD. Impacts of HIV infection on Vγ2Vδ2 T cell phenotype and function: a mechanism for reduced tumor immunity in AIDS. J Leukoc Biol. 2008;84(2):371–9.
Article
CAS
Google Scholar
Yang Y, Dong B, Mittelstadt PR, Xiao H, Ashwell JD. HIV tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J Biol Chem. 2002;277(22):19482–7.
Article
CAS
Google Scholar
Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G, et al. FcγRIII discriminates between 2 subsets of Vγ9Vδ2 effector cells with different responses and activation pathways. Blood. 2004;104(6):1801–7.
Article
CAS
Google Scholar
Gioia C, Agrati C, Casetti R, Cairo C, Borsellino G, Battistini L, et al. Lack of CD27− CD45RA− Vγ9Vδ2+ T cell effectors in immunocompromised hosts and during active pulmonary tuberculosis. J Immunol. 2002;168(3):1484–9.
Article
CAS
Google Scholar