World Health Organization, Estimated Hib and pneumococcal deaths for children under 5 years of age, March 2012. accessed on December 01, 2017, at http://www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2017/en/
Lee W, Austrian R, Weiser JN. Recurrent pneumococcal bacteremia in normal children. Pediatr Infect Dis J. 1994;13(3):231–3.
Article
PubMed
CAS
Google Scholar
Orlicek SL, Herrod HG, Leggiadro RJ, Luedtke G, English BK. Repeated invasive pneumococcal infections in young children without apparent underlying immunodeficiency. J Pediatr. 1997;130(2):284–8.
Article
PubMed
CAS
Google Scholar
King MD, Whitney CG, Parekh F, Farley MM; active bacterial Core surveillance team/emerging infections program network. Recurrent invasive pneumococcal disease: a population-based assessment. Clin Infect Dis 2003;37(8):1029–1036. Epub 2003 Sep 24.
Einarsdóttir HM, Erlendsdóttir H, Kristinsson KG, et al. Nationwide study of recurrent invasive pneumococcal infections in a population with a low prevalence of human immunodeficiency virus infection. Clin Microbiol Infect. 2005;11:744–9.
Article
PubMed
Google Scholar
Mason EO Jr, Wald ER, Tan TQ, et al. Recurrent systemic pneumococcal disease in children. Pediatr Infect Dis J. 2007;26:480–4.
Article
PubMed
Google Scholar
Ingels H, Lambertsen L, Harboe Z, et al. Recurrent invasive pneumococcal disease in children: epidemiological, microbiological and clinical aspects from a Danish 33-year nationwide survey (1980–2013). Scan J Infect Dis. 2014 Apr;46(4):265–71.
Article
Google Scholar
Alsina L, Basteiro MG, de Paz HD et al. Recurrent invasive pneumococcal disease in children: underlying clinical conditions, and immunological and microbiological characteristics. PLoS One 2015 Mar 4;10(3):e0118848. doi: https://doi.org/10.1371/journal.pone.0118848. eCollection 2015.
Ingels H, Schejbel L, Lundstedt AC, et al. Immunodeficiency among children with recurrent invasive pneumococcal disease. Pediatr Infect Dis J. 2015;34(6):644–51.
Article
PubMed
PubMed Central
Google Scholar
Dagan R, Melamed R, Zamir O, Leroy O. Pediatr Infect Dis J. 1997;16(11):1053–9.
Article
PubMed
CAS
Google Scholar
O’Brien KL, Hochman M, Goldblatt D. Combined schedules of pneumococcal conjugate polysaccharide vaccine: is hyporesponsiveness an issue? Lancet Inf Dis. 2007;7:597–606.
Article
Google Scholar
Black S, Shinefield H, Fireman B, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J. 2000;19(3):187–95.
Article
PubMed
CAS
Google Scholar
Ingels H, Rasmussen J, Andersen PH, et al. Impact of pneumococcal vaccination in Denmark during the first 3 years after PCV introduction in the childhood immunization programme. Vaccine. 2012;30(26):3944–50.
Article
PubMed
Google Scholar
Harboe ZB, Dalby T, Weinberger DM, et al. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014 Oct 15;59(8):1066–73.
Article
PubMed
CAS
Google Scholar
Centers for Disease Control and Prevention. Recommended Immunization schedules for persons aged 0–18 year, USA 200, Morb Mortal Wkly Rep. 2008;(579(1):Q1 Pediatrics.2000;106(2pt1):362–66.
Eibl MM, Wolf HM. Vaccination in patients with primary immune deficiency, secondary immune deficiency and autoimmunity with immune regulatory abnormalities. Immunotherapy. 2015;7(12):1273–92.
Article
PubMed
CAS
Google Scholar
EPINEWS.Pneumococcal vaccine in the Danish childhood vaccination programme ; October 2007, Statens Serum Institut.Available at: https://www.ssi.dk/~/media/Indhold/EN%20-%20engelsk/EPI-NEWS/2007/PDF/EPI-NEWS%20-%202007%20-%20No%2037a.ashx. Accessed 1 Dec 2015.
Harboe ZB, Benfield TL, Valentiner-Branth P, et al. Temporal trends in invasive pneumococcal disease and pneumococcal serotypes over 7 decades. Clin Infect Dis. 2010 Feb 1;50(3):329–37.
Article
PubMed
Google Scholar
Konradsen HB, Sørensen UB, Henrichsen J. A modified enzyme-linked immunosorbent assay for measuring type-specific anti-pneumococcal capsular polysaccharide antibodies. J Immunol Methods. 1993;164:13–20.
Article
PubMed
CAS
Google Scholar
Hinge M, Ingels HA, Slotved HC, Mølle I. Serologic response to a 23-valent pneumococcal vaccine administered prior to autologous stem cell transplantation in patients with multiple myeloma. APMIS. 2012;120(11):935–40.
Article
PubMed
CAS
Google Scholar
Wernette CM, Frasch CE, Madore D, et al. Enzymelinked immunosorbent assay for quantitation of human antibodies to pneumococcal polysaccharides. Clin Diagn Lab Immunol. 2003;10(4):514–9.
PubMed
PubMed Central
CAS
Google Scholar
Lal G, Balmer P, Stanford E, Martin S, Warrington R, Borrow R. Development and validation of a nonaplex assay for the simultaneous quantitation of antibodies to nine Streptococcus pneumoniae serotypes. J Immunol Methods. 2005;296:135–47.
Article
PubMed
CAS
Google Scholar
Balloch A, Licciardi PV, Tang ML. Serotype-specific anti-pneumococcal IgG and immune competence: critical differences in interpretation criteria when different methods are used. J Clin Immunol. 2013;33(2):335–41.
Article
PubMed
CAS
Google Scholar
Kantsø B, Halkjær SI, Thomsen OØ, et al. Immunosuppressive drugs impairs antibody response of the polysaccharide and conjugated pneumococcal vaccines in patients with Crohn's disease. Vaccine. 2015;33(41):5464–9.
Article
PubMed
CAS
Google Scholar
Wasserman RL, Sorensen RU. Evaluating children with respiratory tract infections: the role of immunization with bacterial polysaccharide vaccine. Pediatr Infect Dis J. 1999;18(2):157–63.
Article
PubMed
CAS
Google Scholar
Epstein MM, Gruskay F. Selective deficiency in pneumococcal antibody response in children with recurrent infections. Ann Allergy Asthma Immunol. 1995;75(2):125–31.
PubMed
CAS
Google Scholar
Daly TM, Hill H. Use and clinical interpretation of pneumococcal antibody measurements in the evaluation of humoral immune function. Clin Vaccine Immunol. 2015;22(2):148–52.
Article
PubMed
PubMed Central
CAS
Google Scholar
EPINEWS.New Pneumococcal vaccine;March 2001. Available at: https://www.ssi.dk/~/media/Indhold/EN%20-%20engelsk/EPI-NEWS/2001/pdf/EPI-NEWS%20-%202001%20-%20No%2011.ashx (accessed 30 Nov 2017).
EPINEWS.Pneumococcal infection and vaccination; October 1999. Available at: https://www.ssi.dk/~/media/Indhold/DK%20-%20dansk/Aktuelt/Nyhedsbreve/EPI-NYT/EPI-NYT-Arkiv/2002/2002%20pdf/EPI-NYT%20-%202002%20-%20uge%2046.ashx. Accessed 30 Nov 2017.
Perez E, Bonilla FA, Orange JS, Ballow M. Specific antibody deficiency: controversies in diagnosis and management. Front Immunol. 2017;8:586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Estrada J, Najera M, Pounds N, Catano G, Infante AJ. Clinical and Serologic Response to the 23-Valent Polysaccharide Pneumococcal Vaccine in Children and Teens with Recurrent Upper Respiratory Tract Infections and Selective Antibody Deficiency. Pediatr Infect Dis J. 2015;
Tamura K, Matsubara K, Ishiwada N, et al. Hyporesponsiveness to the infecting serotype after vaccination of children with seven-valent pneumococcal conjugate vaccine following invasive pneumococcal disease. Vaccine. 2014;32(13):1444–50.
Article
PubMed
Google Scholar
Väkeväinen M, Soininen A, Lucero M, et al. ARIVAC consortium serotype-specific hyporesponsiveness to pneumococcal conjugate vaccine in infants carrying pneumococcus at the time of vaccination. J Pediatr. 2010;157(5):778–83.
Article
PubMed
CAS
Google Scholar
Givon-Lavi N, Greenberg D, Fritzell B, Siegrist CA. Nasopharyngeal carriage of Streptococcus pneumoniae shortly before vaccination with a pneumococcal conjugate vaccine causes serotype-specific hyporesponsiveness in early infancy. J Infect Dis. 2010;201(10):1570–9.
Article
PubMed
CAS
Google Scholar
Borrow R, Stanford E, Waight P, Helbert M, Balmer P, Warrington R, Slack M, George R, Miller E. Serotype-specific immune unresponsiveness to pneumococcal conjugate vaccine following invasive pneumococcal disease. Infect Immun. 2008;76:5305–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldblatt D, Southern J, Ashton L, et al. Immunogenicity of a reduced schedule of pneumococcal conjugate vaccine in healthy infants and correlates of protection for serotype 6B in the United Kingdom. Pediatr Infect Dis J. 2010;29(5):401–5.
Article
PubMed
Google Scholar
Rennels MB, Edwards KM, Keyserling HL, et al. (1998) safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants. Pediatrics. 1998;101(4 Pt 1):604–11.
Article
PubMed
CAS
Google Scholar
The Danish Guidelines for the Diagnosis and Treatment of Primary Immunodeficiency ("Retningslinier for diagnostik og behandling af primær immundefekt”); 3. Revised Edition 2018: ISBN 978–87–92568-01-4.
Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin Microbiol Rev. 2011;24(3):490–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caya CA, Boikos C, Desai S, Quach C. Dosing regimen of the 23-valent pneumococcal vaccination: A systematic review. Vaccine. 2015;33(11):1302–12.
Article
PubMed
CAS
Google Scholar
Cordonnier C, Labopin M, Robin C, et al. Long-term persistence of the immune response to antipneumococcal vaccines after Allo-SCT: 10-year follow-up of the EBMT-IDWP01 trial. Bone Marrow Transplant. 2015;50(7):978–83.
Article
PubMed
CAS
Google Scholar
Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among children aged 6–18 years with immunocompromising conditions: recommendations of the Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep. 2013 Jun 28;62(25):521–4.
Smets F, Bourgois A, Vermylen C, et al. Randomised revaccination with pneumococcal polysaccharide or conjugate vaccine in asplenic children previously vaccinated with polysaccharide vaccine. Vaccine. 2007;25(29):5278–82.
Article
PubMed
CAS
Google Scholar