Trampuz A, Piper KE, Jacobson MJ, et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357:654–63.
Article
CAS
PubMed
Google Scholar
Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.
Article
CAS
PubMed
Google Scholar
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–54.
Article
CAS
PubMed
Google Scholar
Trampuz A, Zimmerli W. Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs. 2006;66:1089–105.
Article
CAS
PubMed
Google Scholar
Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and Management of Prosthetic Joint Infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–25.
Article
PubMed
Google Scholar
Soriano A, Garcia S, Bori G, et al. Treatment of acute post-surgical infection of joint arthroplasty. Clin Microbiol Infect. 2006;12:930–3.
Article
CAS
PubMed
Google Scholar
Trampuz A, Widmer AF. Infections associated with orthopedic implants. Curr Opin Infect Dis. 2006;19:349–56.
Article
CAS
PubMed
Google Scholar
Mader JT, Adams K, Morrison L. Comparative evaluation of cefazolin and clindamycin in the treatment of experimental Staphylococcus aureus osteomyelitis in rabbits. Antimicrob Agents Chemother. 1989;33:1760–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plott MA, Roth H. Penetration of clindamycin into synovial fluid. Clin Pharmacol Ther. 1970;11:577–80.
Article
CAS
PubMed
Google Scholar
Summersgill JT, Schupp LG, Raff MJ. Comparative penetration of metronidazole, clindamycin, chloramphenicol, cefoxitin, ticarcillin, and moxalactam into bone. Antimicrob Agents Chemother. 1982;21:601–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayberry-Carson KJ, Mayberry WR, Tober-Meyer BK, et al. An electron microscopic study of the effect of clindamycin on adherence of Staphylococcus aureus to bone surfaces. Microbios. 1986;45:21–32.
CAS
PubMed
Google Scholar
Zeller, et al. Continuous Clindamycin infusion, an innovative approach to treating Bone and joint infections. Antimicrob Agents Chemother. 2010;54:88–92.
Article
CAS
PubMed
Google Scholar
Arditi M, Yogev R. In vitro interaction between rifampin and clindamycin against pathogenic coagulase-negative staphylococci. Antimicrob Agents Chemother. 1989;33:245–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho JL, Klempner MS. In vitro evaluation of clindamycin in combination with oxacillin, rifampin, or vancomycin against Staphylococcus aureus. Diagn Microbiol Infect Dis. 1986;4:133–8.
Article
CAS
PubMed
Google Scholar
Renneberg J, Karlsson E, Nilsson B, et al. Interactions of drugs acting against Staphylococcus aureus in vitro and in a mouse model. J Infect. 1993;26:265–77.
Article
CAS
PubMed
Google Scholar
Gagnon RF, Richards GK, Kostiner GB. Time-kill efficacy of antibiotics in combination with rifampin against Staphylococcus epidermidis biofilms. Adv Peritoneal Dialysis Conference Peritoneal Dialysis. 1994;10:189–92.
CAS
Google Scholar
O'Reilly T, Kunz S, Sande E, et al. Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin. Antimicrob Agents Chemother. 1992;36:2693–7.
Article
PubMed
PubMed Central
Google Scholar
Hackbarth CJ, Chambers HF, Sande MA. Serum bactericidal activity of rifampin in combination with other antimicrobial agents against Staphylococcus aureus. Antimicrob Agents Chemother. 1986;29:611–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Czekaj J, Dinh A, Moldovan A, et al. Efficacy of a combined oral clindamycin-rifampicin regimen for therapy of staphylococcal osteoarticular infections. Scand J Infect Dis. 2011;43:962–7.
Article
CAS
PubMed
Google Scholar
The international consensus group of periprosthetic joint infection, Parvizi J, Gehrke T. Definition of periprosthetic joint infection. J of Arthroplasty. 2014;29:1331.
Article
Google Scholar
Schreurs BW, Keurentjes JC, Gardeniers JW, et al. Acetabular revision with impacted morsellised cancellous bone grafting and a cemented acetabular component: a 20- to 25-year follow-up. J Bone Joint Surg Br. 2009;91:1148–53.
Article
CAS
PubMed
Google Scholar
Ruzaimi MY, Shahril Y, Masbah O, et al. Antimicrobial properties of erythromycin and colistin impregnated bone cement. An in vitro analysis. Med J Malaysia. 2006;61(Suppl A):21–6.
PubMed
Google Scholar
Simplexcement, http://isulmed.com/archivos/complementos-cemento/Simplex%20Antibiotic%20Brochure%20(ingles).pdf. Accessed 24-10-2016.
Maltezou HC, Giamarellou H. Community-acquired methicillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents. 2006;27:87–96.
Article
CAS
PubMed
Google Scholar
Willemse-Erix HF, Jachtenberg J, Barutci H, et al. Proof of principle for successful characterization of methicillin-resistant coagulase-negative staphylococci isolated from skin by use of Raman spectroscopy and pulsed-field gel electrophoresis. J Clin Microbiol. 2010;48:736–40.
Article
CAS
PubMed
Google Scholar
Zimmerli W, Widmer AF, Blatter M, et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-body infection (FBI) study group. JAMA. 1998;279:1537–41.
Article
CAS
PubMed
Google Scholar
Peel TN, Buising KL, Dowsey MM, et al. Outcome of debridement and retention in prosthetic joint infections by methicillin-resistant staphylococci, with special reference to rifampin and fusidic acid combination therapy. Antimicrob Agents Chemother. 2013;57:350–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of Methicillin–susceptible and Methicillin–resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56:182–94.
Article
PubMed
Google Scholar
El Helou OC, Berbari EF, Lahr BD, et al. Efficacy and safety of rifampin containing regimen for staphylococcal prosthetic joint infections treated with debridement and retention. Eur J Clin Microbiol Infect Dis. 2010;29:961–7.
Article
CAS
PubMed
Google Scholar
Berdal JE, Skramm I, Mowinckel P, et al. Use of rifampicin and ciprofloxacin combination therapy after surgical debridement in the treatment of early manifestation prosthetic joint infections. Clin Microbiol Infect. 2005;11:843–5.
Article
CAS
PubMed
Google Scholar
Laffer RR, Graber P, Ochsner PE, et al. Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect. 2006;12:433–9.
Article
CAS
PubMed
Google Scholar
Sendi P, Zimmerli W. Challenges in periprosthetic knee-joint infection. Int J Artif Organs. 2011;34:947–56.
Article
CAS
PubMed
Google Scholar
Nguyen S, Robineau O, Titecat M, et al. Influence of daily dosage and frequency of administration of rifampicin-levofloxacin therapy on tolerance and effectiveness in 154 patients treated for prosthetic joint infections. Eur J Clin Microbiol Infect Dis. 2015;34(8):1675–82.
Article
CAS
PubMed
Google Scholar
Bernard A, Kermarrec G, Parize P, et al. Dramatic reduction of clindamycin serum concentration in staphylococcal osteoarticular infection patients treated with the oral clindamycin-rifampicin combination. J Infect. 2015;71:200–6.
Article
PubMed
Google Scholar
Cruris E, Pestre V, Jullien V, et al. Pharmacokinetic variability of clindamycin and influence of rifampicin on clindamycin concentration in patients with bone and joint infections. Infection. 2015;43:473–81.
Article
Google Scholar
Pushkin R, Iglesias-Ussel MD, Keedy K, et al. A randomized study evaluating oral Fusidic acid (CEM-102) in combination with oral Rifampin compared with standard-of-care antibiotics for treatment of prosthetic joint infections: a newly identified drug-drug interaction. Clin Infect Dis. 2016;63(12):1599–604.
Article
PubMed
Google Scholar