Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.
Article
CAS
PubMed
Google Scholar
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. International Agency for Research on Cancer (IARC). France: Lyon; 2014.
Google Scholar
Clifford GM, Gallus S, Herrero R, Munoz N, Snijders PJ, Vaccarella S, et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366:991–8.
Article
CAS
PubMed
Google Scholar
de Sanjosé S, Wim GQ, Laia A, Daan TG, Jo EK, Belen L, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.
Article
PubMed
Google Scholar
Firnhaber C, Westreich D, Schulze D, Williams S, Siminya M, Michelow P, et al. Highly active antiretroviral therapy and cervical dysplasia in HIV-positive women in South Africa. J Int AIDS Soc. 2012;15:17382.
Article
PubMed
PubMed Central
Google Scholar
Moodley M, Moodley J, Kleinschmidt I. Invasive cervical cancer and human immunodeficiency virus (HIV) infection: a South African perspective. Int J Gynecol Cancer. 2001;11:194–7.
Article
CAS
PubMed
Google Scholar
Ahdieh L, Klein RS, Burk R, Cu-Uvin S, Schuman P, Duerr A, et al. Prevalence, incidence, and type-specific persistence of human papillomavirus in human immunodeficiency virus (HIV)-positive and HIV-negative women. J Infect Dis. 2001;184:682–90.
Article
CAS
PubMed
Google Scholar
Singh DK, Anastos K, Hoover DR, Burk RD, Shi Q, Ngendahayo L, et al. Human papillomavirus infection and cervical cytology in HIV-infected and HIV-uninfected Rwandan women. J Infect Dis. 2009;199:1851–61.
Article
PubMed
PubMed Central
Google Scholar
Didelot-Rousseau MN, Nagot N, Costes-Martineau V, Valles X, Ouedraogo A, Konate I, et al. Human papillomavirus genotype distribution and cervical squamous intraepithelial lesions among high-risk women with and without HIV-1 infection in Burkina Faso. Br J Cancer. 2006;95:355–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weissenborn SJ, Funke AM, Hellmich M, Mallmann P, Fuchs PG, Pfister HJ, et al. Oncogenic human papillomavirus DNA loads in human immunodeficiency virus-positive women with high-grade cervical lesions are strongly elevated. J Clin Microbiol. 2003;41:2763–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinner SR, Szarewski A, Romanowski B, Garland SM, Lazcano-Ponce E, Salmerón J, et al. Efficacy, safety, and immunogenicity of the human papillomavirus 16/18 AS04-adjuvanted vaccine in women older than 25 years: 4-year interim follow-up of the phase 3, double-blind, randomised controlled VIVIANE study. Lancet. 2014;384:2213–27.
Article
CAS
PubMed
Google Scholar
The FUTURE II Study Group. Quadrivalent Vaccine against Human Papillomavirus to Prevent High-Grade Cervical Lesions. N Engl J Med. 2007;356:1915–27.
Article
Google Scholar
Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–14.
Article
CAS
PubMed
Google Scholar
Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, Perez G, et al. A pooled analysis of continued prophylactic efficacy of quadrivalent human papillomavirus (Types 6/11/16/18) vaccine against high-grade cervical and external genital lesions. Cancer Prev Res (Phila). 2009;2:868–78.
Article
Google Scholar
Lehtinen M, Paavonen J, Wheeler CM, Jaisamrarn U, Garland SM, Castellsague X, et al. Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 2012;13:89–99.
Article
CAS
PubMed
Google Scholar
Denny L, Hendricks B, Gordon C, Herve C, Thomas F, Hezareh M, et al. Safety and Immunogenicity of the HPV-16/18 As04-Adjuvanted Vaccine In HIV-Positive Women In South Africa Up To 12 Months After Vaccination [abstract]. Rome, Italy: 2012 FIGO World Congress of Gynecology & Obstetrics in Rome; 2012. p. 7–12. October 2012.
Google Scholar
Kahn JA, Xu J, Kapogiannis BG, Rudy B, Gonin R, Liu N, et al. Immunogenicity and safety of the human papillomavirus 6, 11, 16, 18 vaccine in HIV-infected young women. Clin Infect Dis. 2013;57:735–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weekly epidemiological record - 24 October 2014, 89th year http://www.who.int/wer/2014/wer8943.pdf. Accessed: 17 Dec. 2014
SA targets cervical cancer with HPV vaccine campaign http://www.southafrica.info/services/health/hpv-vaccine-130314.htm. Accessed: Sept. 2015
HPV vaccination in populations with high HIV prevalence http://www.cervicalcanceraction.org/pubs/CCA_HPV_vaccine_HIV_prevalent_populations.pdf. Accessed: 4 Aug. 2014
Seto K, Marra F, Raymakers A, Marra CA. The cost effectiveness of human papillomavirus vaccines: a systematic review. Drugs. 2012;72:715–43.
Article
PubMed
Google Scholar
Sinanovic E, Moodley J, Barone MA, Mall S, Cleary S, Harries J. The potential cost-effectiveness of adding a human papillomavirus vaccine to the cervical cancer screening programme in South Africa. Vaccine. 2009;27:6196–202.
Article
PubMed
Google Scholar
Suárez E, Smith JS, Bosch FX, Nieminen P, Chen CJ, Torvinen S, et al. Cost-effectiveness of vaccination against cervical cancer: A multi-regional analysis assessing the impact of vaccine characteristics and alternative vaccination scenarios. Vaccine. 2008;26:F29–45.
Article
PubMed
Google Scholar
Mid-year population estimates 2011 http://www.statssa.gov.za/publications/P0302/P03022011.pdf. Accessed: 2 Nov. 2012
Lissouba P, van de Perre P, Auvert B. Association of genital human papillomavirus infection with HIV acquisition: a systematic review and meta-analysis. Sex Transm Infect. 2013;89(5):350–6.
Article
PubMed
PubMed Central
Google Scholar
Massad LS, Ahdieh L, Benning L, Minkoff H, Greenblatt RM, Watts H, et al. Evolution of cervical abnormalities among women with HIV-1: evidence from surveillance cytology in the women's interagency HIV study. J Acquir Immune Defic Syndr. 2001;27:432–42.
Article
CAS
PubMed
Google Scholar
National Department of Health, Women's Health Research Unit University of Cape Town, Women's Health Project University of Witwatersrand, and Engenderhealth: Implementing cervical screening in South Africa: Cervical health implementation project; Volume I: a guide for programme managers http://www.healthlink.org.za/uploads/files/CHIPvol1.pdf. Accessed: Sept. 2015
World Health Organization (WHO). Comprehensive cervical cancer control: a guide to essential practice. Geneva: World Health Organisation; 2006.
Google Scholar
Goldie SJ, Kohli M, Grima D, Weinstein MC, Wright TC, Bosch FX, et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst. 2004;96:604–15.
Article
PubMed
Google Scholar
Gold MR, Franks P, McCoy KI, Fryback DG. Toward consistency in cost-utility analyses: using national measures to create condition-specific values. Med Care. 1998;36:778–92.
Article
CAS
PubMed
Google Scholar
Insinga R, Glass A, Rush B: Health state transitions following an abnormal pap smear: implications for health utility assessment in cost-effectiveness analyses [Abstract W-02]. In 22nd International Papillomavirus Conference & Clinical Workshop 2005; 30 Apr.-06 May 2005. Vancouver, BC, Canada.
Myers ER, Green S, Lipkus I: Patient preferences for health states related to HPV infection: visual analog scale versus time trade-off elicitation [Abstract n° 542]. In Twenty-First International Papillomavirus Conference; 20–27 February 2004. México City, México.
Institute of Medicine (US) Committee to Study Priorities for Vaccine Development, Stratton KR DJLR. Appendix 11: Human Papillomavirus. In Vaccines for the 21st century. In: Stratton KR, Durch JS, Lawrence S, editors. A tool for decisionmaking. Washington D.C: National Academy Press; 2000. p. 213–21.
Google Scholar
Robberstad B, Olsen JA. The health related quality of life of people living with HIV/AIDS in sub-Saharan Africa - a literature review and focus group study. Cost Eff Resour Alloc. 2010;8:5.
Article
PubMed
PubMed Central
Google Scholar
Medicines and related substances act (101 of 1965) regulations relating to a transparent pricing system for medicines and scheduled substances: Publication of the guidelines for pharmacoeconmic submissions http://www.mediscor.net/docs/GG/Medicines%20and%20related%20Substances%20Act%20101-1965%20-%20Regulations%20relating%20to%20a%20transparent%20(20130201-GGR-36118-00068).pdf.
International Monetary Fund: World economic outlook database http://www.imf.org/external/pubs/ft/weo/2013/01/weodata/index.aspx. Accessed: 9 May 2013
Goldie SJ, Gaffikin L, Goldhaber-Fiebert JD, Gordillo-Tobar A, Levin C, Mahe C, et al. Cost-effectiveness of cervical-cancer screening in five developing countries. N Engl J Med. 2005;353:2158–68.
Article
CAS
PubMed
Google Scholar
South Africa Consumer Price Index (2008–2012) http://www.statssa.gov.za/publications/P0141/CPIHistory.pdf?
South African Medicine Price Registry http://www.mpr.gov.za/PublishedDocuments.aspx#DocCatId=21.
World Health Organization (WHO). Human papillomavirus vaccines: WHO position paper, October 2014. Wkly Epidemiol Rec. 2014;89:465–91.
Google Scholar
Lazcano-Ponce E, Stanley M, Munoz N, Torres L, Cruz-Valdez A, Salmeron J, et al. Overcoming barriers to HPV vaccination: Non-inferiority of antibody response to human papillomavirus 16/18 vaccine in adolescents vaccinated with a two-dose vs. a three-dose schedule at 21 months. Vaccine. 2014;32:725–32.
Article
CAS
PubMed
Google Scholar
Romanowski B, Schwarz TF, Ferguson LM, Peters K, Dionne M, Schulze K, et al. Immunogenicity and safety of the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose schedule compared to the licensed 3-dose schedule: Results from a randomized study. Hum Vaccin. 2011;7:1374–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puthanakit T, Schwarz TF, Esposito S, Frenette L, McNeil S, Rheault P, et al. Immune response to a 2-dose schedule for the HPV-16/18 ASO4-adjuvanted vaccine in girls (9–14) versus 3 doses in women (15–25): a randomised trial.2013. (Abstract n° OC 6–11 presented at the European Research Organisation on Genital Infection and Neoplasia (EUROGIN) International Multidisciplinary Congress, Florence, Italy, Nov. 3–6).
Aregay M, Shkedy Z, Molenberghs G, David MP, Tibaldi F. Model-Based Estimates of Long-Term Persistence of Induced HPV Antibodies: A Flexible Subject-Specific Approach. J Biopharm Stat. 2013;23:1228–48.
Article
PubMed
Google Scholar
World Health Organization: WHO guide for standardization of economic evaluations of immunization programmes: final version July 2008 http://whqlibdoc.who.int/hq/2008/WHO_IVB_08.14_eng.pdf.
Berkhof J, Bogaards JA, Demirel E, Diaz M, Sharma M, Kim JJ. Cost-effectiveness of cervical cancer prevention in Central and Eastern Europe and Central Asia. Vaccine. 2013;31:H71–9.
Article
PubMed
Google Scholar
Marra F, Cloutier K, Oteng B, Marra C, Ogilvie G. Effectiveness and cost effectiveness of human papillomavirus vaccine: a systematic review. Pharmacoeconomics. 2009;27:127–47.
Article
PubMed
Google Scholar
Ng'andwe C, Lowe JJ, Richards PJ, Hause L, Wood C, Angeletti PC. The distribution of sexually-transmitted Human Papillomaviruses in HIV positive and negative patients in Zambia. Africa BMC Infect Dis. 2007;7:77.
Article
PubMed
Google Scholar
Omar T, Schwartz S, Hanrahan C, Modisenyane T, Tshabangu N, Golub JE, et al. Progression and regression of premalignant cervical lesions in HIV-infected women from Soweto: a prospective cohort. AIDS. 2011;25:87–94.
Article
PubMed
PubMed Central
Google Scholar
Bratcher LF, Sahasrabuddhe VV. The impact of antiretroviral therapy on HPV and cervical intraepithelial neoplasia: current evidence and directions for future research. Infect Agent Cancer. 2010;5:8.
Article
PubMed
PubMed Central
Google Scholar
Berkhof J, de Bruijne MC, Zielinski GD, Meijer CJ. Natural history and screening model for high-risk human papillomavirus infection, neoplasia and cervical cancer in the Netherlands. Int J Cancer. 2005;115:268–75.
Article
CAS
PubMed
Google Scholar
Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006;208:152–64.
Article
CAS
PubMed
Google Scholar
National Institute for Health and Care Excellence (NICE). Guide to the methods of technology appraisal 2013. 2013. http://www.nice.org.uk/article/pmg9/chapter/Foreword.
Fesenfeld M, Hutubessy R, Jit M. Cost-effectiveness of human papillomavirus vaccination in low and middle income countries: A systematic review. Vaccine. 2013;31:3786–804.
Article
PubMed
Google Scholar
Goldie SJ, Kuhn L, Denny L, Pollack A, Wright TC. Policy analysis of cervical cancer screening strategies in low-resource settings: clinical benefits and cost-effectiveness. JAMA. 2001;285:3107–15.
Article
CAS
PubMed
Google Scholar
Kim JJ, Campos NG, O'Shea M, Diaz M, Mutyaba I. Model-based impact and cost-effectiveness of cervical cancer prevention in sub-Saharan Africa. Vaccine. 2013;31 Suppl 5:F60–72.
Article
PubMed
Google Scholar
Shisana O, Rehle T, Simbayi LC, Zuma K, Jooste S, Pillay-van-Wyk, et al. South African National HIV Prevalence, Incidence, Behaviour and Communication Survey, 2008. A Turning Tide Among Teenagers? Cape Town, South Africa: HSRC Press; 2009.
Incidence of histologically diagnosed cancer in South Africa, 2003, 2004 http://www.nioh.ac.za/?page=cancer_statistics&id=163. Accessed: 1 Feb. 2012
Institut Català d'Oncologia (ICO): Information Centre on HPV and Cancer (HPV Information Centre) http://www.hpvcentre.net/dataquery.php. Accessed: 10 Feb. 2014
Moscicki AB, Hills N, Shiboski S, Powell K, Jay N, Hanson E, et al. Risks for incident human papillomavirus infection and low-grade squamous intraepithelial lesion development in young females. JAMA. 2001;285:2995–3002.
Article
CAS
PubMed
Google Scholar
Schlecht NF, Platt RW, Duarte-Franco E, Costa MC, Sobrinho JP, Prado JC, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst. 2003;95:1336–43.
Article
PubMed
Google Scholar
Melnikow J, Nuovo J, Willan AR, Chan BK, Howell LP. Natural history of cervical squamous intraepithelial lesions: a meta-analysis. Obstet Gynecol. 1998;92:727–35.
CAS
PubMed
Google Scholar
Holowaty P, Miller AB, Rohan T, To T. Natural history of dysplasia of the uterine cervix. J Natl Cancer Inst. 1999;91:252–8.
Article
CAS
PubMed
Google Scholar
De Vuyst H, Lillo F, Broutet N, Smith JS. HIV, human papillomavirus, and cervical neoplasia and cancer in the era of highly active antiretroviral therapy. Eur J Cancer Prev. 2008;17:545–54.
Article
PubMed
Google Scholar
Actuarial Society of South Africa: ASSA2008: AIDS Demographic Model 2008 http://www.actuarialsociety.org.za/Societyactivities/CommitteeActivities/AidsCommittee/Models.aspx. Access granted in November 2012 and confirmed in November 2015 by the Actuarial Society of South Africa, owner of the model.
Vijayaraghavan A, Efrusy M, Lindeque G, Dreyer G, Santas C. Cost effectiveness of high-risk HPV DNA testing for cervical cancer screening in South Africa. Gynecol Oncol. 2009;112:377–83.
Article
PubMed
Google Scholar
Coghill AE, Newcomb PA, Madeleine MM, Richardson BA, Mutyaba I, Okuku F, et al. Contribution of HIV infection to mortality among cancer patients in Uganda. AIDS. 2013;27(18):2933–42.
Article
PubMed
PubMed Central
Google Scholar
Fahey MT, Irwig L, Macaskill P. Meta-analysis of Pap test accuracy. Am J Epidemiol. 1995;141:680–9.
CAS
PubMed
Google Scholar