Weber R, Sabin CA, Friis-Møller N, Reiss P, El-Sar WM, Kirk O, et al. Liver Related Deaths in Persons Infected with the HIV Virus: The D-A-D Study. Ann Intern Med. 2006;166:1632–41.
Article
Google Scholar
Graham CS, Baden LR, Yu E, Mrus JM, Carnie J, Heeren T, et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin Infect Dis. 2001;33:562–9.
Article
CAS
PubMed
Google Scholar
Soto B, Sanchez-Quijano A, Rodrigo L, Del Olmo JA, García-Bengoechea M, Hernández-Quero J, et al. Human immunodeficiency virus infection modifies the natural history of chronic parenterally-acquired hepatitis C with an unusually rapid progression to cirrhosis. J Hepatol. 1997;26(1):1–5.
Article
CAS
PubMed
Google Scholar
Di Martino V, Rufat P, Boyer N, Renard P, Degos F, Martinot-Peignoux M, et al. The influence of human immunodeficiency virus coinfection on chronic hepatitis C in injection drug users: a long-term retrospective cohort study. Hepatology. 2001;34(6):1193–9.
Article
PubMed
Google Scholar
Monto A, Kakar S, Dove LM, Bostrom A, Miller EL, Wright TL. Contributions to hepatic fibrosis in HIV-HCV coinfected and HCV monoinfected patients. Am J Gastroenterol. 2006;101:1509–15.
Article
PubMed
Google Scholar
Baker JV. Chronic HIV disease and activation of the coagulation system. Thromb Res. 2013;132(5):495–9.
Baker JV, Hullsiek KH, Bradford RL, Prosser R, Tracy RP, Key NS. Circulating levels of tissue factor microparticle procoagulant activity are reduced with antiretroviral therapy and are associated with persistent inflammation and coagulation activation among HIV positive patients. J Acquir Immune Defic Syndr. 2013;63:367–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coughlin SR. Thrombin signaling and protease-activated receptors. Nature. 2000;407:258–64.
Article
CAS
PubMed
Google Scholar
Key NS. Analysis of tissue factor positive microparticles. Thromb Res. 2010;125 Suppl 1:S42–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morel O, Jesel L, Freyssinet JM, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol. 2011;31:15–26.
Article
CAS
PubMed
Google Scholar
Chu AJ. Tissue factor, blood coagulation, and beyond: An overview. International J Inflammation 2011:367284. Epub.
Stravitz RT, Bowling R, Bradford RL, Key NS, Glover S, Thacker LR, et al. Role of procoagulant microparticles in mediating complications and coutcome of acute liver injury/acute liver failure. Hepatology. 2013;58:304–13.
Article
CAS
PubMed
Google Scholar
Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles—a new player in sepsis? Crit Care. 2010;14:236.
Article
PubMed
PubMed Central
Google Scholar
Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood. 2010;115(2):161–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):426–35.
Article
PubMed
Google Scholar
Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M. Shear elasticity probe for soft tissues with 1-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):436–46.
Article
PubMed
Google Scholar
Kirk GD, Astemborski J, Mehta SH, Spoler C, Fisher C, Allen D, et al. Assessment of liver fibrosis by transient elastography in persons with hepatitis C virus infection or HIV-hepatitis C virus coinfection. Clin Infect Dis. 2009;48(7):963–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khorana AA, Francis CW, Menzies KE, Wang JG, Hyrien O, Hathcock J, et al. Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer. J Thromb Haemost. 2008;6:1983–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodowanec A, Brady K, Gao W, Kincaid S, Plants J, Bahk M, et al. Differences in CD4+ T-Cell Immune Activation in HIV, HCV, and HIV/HCV Coinfection are Influenced by HIV and HCV Infection Status. J Aquir Immune Defic Syndr. 2013;64:232–40.
Article
CAS
Google Scholar
Catalfamo M, Wilhelm C, Tcheung L, Proschan M, Friesen T, Park JH, et al. CD4 and CD8 T Cell Immune Activation during Chronic HIV Infection; roles of Homeostasis, HIV, Type I IFN, IL-7. J Immunol. 2011;186:2106–16.
Article
CAS
PubMed
Google Scholar
Hurley AH, Smith M, Karpova T, Hasley RB, Belkina N, Shaw S, et al. Enhanced Effector Function of CD8+ T Cells From Healthy Controls and HIV-infected Patients Occurs through Thrombin Activation of Protease-Activated Receptor 1. J Infect Dis. 2013;207:638–50.
Article
CAS
PubMed
Google Scholar
Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology. 2008;135(1):226–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasaratnam B, Kaye D, Jennings G, Dudley F, Chin-Dusting J, et al. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. A randomized trial. Ann Intern Med. 2003;139:186–93.
Article
PubMed
Google Scholar
Gauley J, Pisetsky DS. The release of microparticles by RAW 264.7 macrophage cells stimulated with TLR ligands. J Leukoc Biol. 2010;87:1115–23.
Article
CAS
PubMed
Google Scholar
Kornek M, Popov Y, Libermann TA, Afdhal NH, Schuppan D. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology. 2011;53:230–42.
Article
CAS
PubMed
Google Scholar
Gonzalez SA, Fiel MI, Sauk J, Canchis PW, Liu RC, Chiriboga L, et al. Inverse association between hepatic stellate cell apoptosis and fibrosis in chronic hepatitis C virus infection. J Viral Hepat. 2009;16(2):141–8.
Article
CAS
PubMed
Google Scholar
Friedman SL. Molecular regulation of hepatic fibrosis, and integrated cellular response to tissue injury. J Biol Chem. 2000;22:136–44.
Google Scholar
Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39:273–8.
Article
PubMed
Google Scholar
Baker AK, Wang R, Mackman N, Luyendyk JP. Rapamycin enhances LPS induction of tissue factor and tumor necrosis factor-alpha expression in macrophages by reducing IL-10 expression. Mol Immunol. 2009;46:2249–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antoniak S, Owens 3rd AP, Baunacke M, Williams JC, Lee RD, Weithäuser A, et al. PAR-1 contributes to the innate immune response during viral infection. J Clin Invest. 2013;123(3):1310–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petts G, Dhar A, Kudo H, Sadiq F, Anstee QM, Kallis YN, et al. Targeted inhibition of tissue factor suppresses hepatic fibrosis in CCL4 treated mice. Gut. 2012;61:A28–8.
Martinelli A, Knapp S, Anstee Q, Worku M, Tommasi A, Zucoloto S, et al. Effect of a thrombin receptor (protease-activated receptor 1, PAR-1) gene polymorphism in chronic hepatitis C liver fibrosis. J Gastroenterol Hepatol. 2008;23(9):1403–9.
Article
CAS
PubMed
Google Scholar
Anstee QM, Goldin RD, Wright M, Martinelli A, Cox R, Thursz MR. Coagulation status modulates murine hepatic fibrogenesis: implications for the development of novel therapies. J Thromb Haemost. 2008;6(8):1336–43.
Article
CAS
PubMed
Google Scholar
Butt AA, Xiaoqiang W, Budoff M, Leaf D, Kuller LH, Justice AC. Hepatitis C Virus Infection and the Risk of Coronary Disease. Clin Infect Dis. 2009;49:225–32.
Article
PubMed
PubMed Central
Google Scholar
Petta S, Torres D, Fazio G, Cammà C, Cabibi D, Di Marco V, et al. Carotid Atherosclerosis and Chronic Hepatitis C: A Prospective Study of Risk Associations. Hepatology. 2012;55:1317–23.
Article
PubMed
Google Scholar
Vassalle, Masini S, Bianchi F, Zucchelli GC. Evidence for association between hepatitis C virus seropositivity and coronary artery disease. Heart. 2004;90:565–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alyan O, Kacmaz F, Ozdemir O, Deveci B, Astan R, Celebi AS, et al. Hepatitis C Infection is associated with increased coronary artery atherosclerosis defined by Modified Reardon Severity Score System. Circ J. 2008;72:1960–5.
Article
PubMed
Google Scholar
Boddi M, Abbate R, Chellini B, Giusti B, Giannini C, Pratesi G, et al. Hepatitis C virus RNA localization in human carotid plaques. J Clin Virol. 2010;47:72–5.
Article
CAS
PubMed
Google Scholar
Talal AH, Feron-Rigodon M, Madere J, Subramanian GM. Simtuzumab, an Antifibrotic Monoclonal Antibody Against Lysyl Oxidase-Like 2 (LOXL2) Enzyme, Is Safe and Well Tolerated in Patients with Liver Disease. 2013 European Association of the Study of the Liver Conference. Abstract 1319.
Owens AP, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res. 2011;108:1284–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee RD, Barcel DA, Williams JC, Wang JG, Boles JC, Manly DA, et al. Pre-analytical and analytical variables affecting the measurement of plasma-derived microparticle tissue factor activity. Thromb Res. 2012;129:80–5.
Article
CAS
PubMed
Google Scholar
Auwerda JJ, Yuana Y, Osanto S, de Maat MP, Sonneveld P, Bertina RM. Microparticle-associated tissue factor activity and venous thrombosis in multiple myeloma. Thromb Haemost. 2011;105:14–20.
Article
CAS
PubMed
Google Scholar
Parhami-Seren B, Butenas S, Krudysz-Ambio J, Mann KG. Immunologic quantitation of tissue factor. J Thromb Haemost. 2006;4:1747–55.
Article
CAS
PubMed
Google Scholar
Key NS, Mackman N. Tissue factor and its measurements in whole blood, plasma, and microparticles. Semin Thromb Hemost. 2010;36:865–75.
Article
CAS
PubMed
Google Scholar
Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prignet J, Eschwege V, et al. Monocyte vesiculation is is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccaride. J Immunol. 1994;153:3245–55.
CAS
PubMed
Google Scholar
Dasgupta SK, Abdel-Monem H, Niravath P, et al. Lactadherin and clearance of platelet-derived microvesicles. Blood. 2009;113:1332–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willekens FL, Werre JM, Kruijt JK, Le A, Bellera RV, Langlois K, et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood. 2005;105:2141–5.
Article
CAS
PubMed
Google Scholar
Al Faraj A, Gazeau F, Wilhelm C, Devue C, Guérin CL, Péchoux C, et al. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology. 2012;263:169–78.
Article
PubMed
Google Scholar
Rautou PE, Vion AC, Amabile N, Chironi G, Simon A, Tedgui A, et al. Microparticles, vascular function, and atherothrombosis. Circ Res. 2011;109:593–606.
Article
CAS
PubMed
Google Scholar
Thabut D, Tazi KA, Bonnefont-Rousselot D, Aller M, Farges O, Guimont MC, et al. High-density lipoprotein administration attenuates liver proinflammatory response, restores liver endothelial nitric oxide synthase activity, and lowers portal pressure in cirrhotic rats. Hepatology. 2007;46:1893–906.
Article
CAS
PubMed
Google Scholar