Skip to main content

Corynebacteriumendocarditis species-specific risk factors and outcomes

Abstract

Background

Corynebacterium species are recognized as uncommon agents of endocarditis, but little is known regarding species-specific risk factors and outcomes in Corynebacterium endocarditis.

Methods

Case report and Medline search of English language journals for cases of Corynebacterium endocarditis. Inclusion criteria required that cases be identified as endocarditis, having persistent Corynebacterium bacteremia, murmurs described by the authors as identifying the affected valve, or vegetations found by echocardiography or in surgical or autopsy specimens. Cases also required patient-specific information on risk factors and outcomes (age, gender, prior prosthetic valve, other prior nosocomial risk factors (infected valve, involvement of native versus prosthetic valve, need for valve replacement, and death) to be included in the analysis. Publications of Corynebacterium endocarditis which reported aggregate data were excluded. Univariate analysis was conducted with chi-square and t-tests, as appropriate, with p = 0.05 considered significant.

Results

129 cases of Corynebacterium endocarditis involving nine species met inclusion criteria. Corynebacterium endocarditis typically infects the left heart of adult males and nearly one third of patients have underlying valvular disease. One quarter of patients required valve replacement and one half of patients died. Toxigenic C. diphtheriae is associated with pediatric infections (p < 0.001). Only C. amycolatum has a predilection for women (p = 0.024), while C. pseudodiphtheriticum infections are most frequent in men (p = 0.023). C. striatum, C. jeikeium and C. hemolyticum are associated with nosocomial risk factors (p < 0.001, 0.028, and 0.024, respectively). No species was found to have a predilection for any particular heart valve. C. pseudodiphtheriticum is associated with a previous prosthetic valve replacement (p = 0.004). C. jeikeium infections are more likely to require valve replacement (p = 0.026). Infections involving toxigenic C. diphtheriae and C. pseudodiphtheriticum are associated with decreased survival (p = 0.001 and 0.032, respectively).

Conclusion

We report the first analysis of species-specific risk factors and outcomes in Corynebacterium endocarditis. In addition to species-specific associations with age, gender, prior valvular diseases, and other nosocomial risk factors, we found differences in rates of need for valve replacement and death. This review highlights the seriousness of these infections, as up to 28% of patients required valve replacement and 43.5% died.

Peer Review reports

Background

Corynebacterium species, or "diphtheroids", are aerobic, non-sporulating, pleomorphic, Gram-positive bacilli that are often considered non-pathogenic components of normal skin flora and mucosal membranes. Although frequently isolated in cultures, they are commonly and often justifiably assumed to be contaminants [1, 2]. Nevertheless, the ability of these bacteria to cause life-threatening disease is well established, and over the last decade there have been increasing reports of their pathogenic potential in numerous clinical scenarios, including bacteremia and endocarditis [35]. Diphtheroids are now thought to cause 9% of early and 4% of late prosthetic valve endocarditis (PVE), [1, 4] but only 0.2 to 0.4% of cases of native valve endocarditis (NVE) [4, 6]. Recognized risk factors for Corynebacterium endocarditis include preexisting cardiac disease, a prior history of bacterial endocarditis, and the presence of prosthetic devices, including intravascular access and auriculo-ventricular cerebrospinal fluid shunts [1, 6, 7]. It is unknown whether certain species of Corynebacterium are more frequently associated with endocarditis, are associated with different predisposing conditions or risk factors, or if they have differences in outcomes – such as requiring valve replacement surgery or greater mortality. To date, most published reports of Corynebacterium endocarditis have been case reports and series, and no detailed species-specific analysis of risk factors and outcomes in Corynebacterium endocarditis has been conducted. Herein, we review the literature for patient-level reports of Corynebacterium endocarditis and conducted the first species-specific analysis of risk factors and outcomes in Corynebacterium endocarditis.

Methods

A Medline search of English language journals for reported cases of Corynebacterium endocarditis. In those reports with case series, every effort was made to obtain the primary reference or discuss the particulars of the case with the original authors. We standardized our definitions for inclusion/exclusion to include only cases with persistent Corynebacterium bacteremia (at least >1 positive blood culture with an identified Corynebacterium species), murmurs described by the authors of the source publication as identifying the affected valve, or vegetations found either in an echocardiographic report, or in surgical or autopsy specimens. A number of cases described Corynebacterium bacteremia in the setting of pacemaker infections and non-valvular endovascular foci of infections. While these are considered by many to be "endocarditis equivalents", they did not meet our definition of endocarditis and were dropped from the analysis. In addition, only cases whose source report included individual patient-specific information on risk factors and outcomes were included in the analysis. Patient-level characteristics and medical information of interest are detailed below. However, publications of Corynebacterium endocarditis which reported aggregate data were excluded.

Patient characteristics in the analysis included demographic data, such as gender and age. Pediatric cases were defined as those occurring in patients less than 18 years old of age and adult cases as those occurring in patients 18 years or older. Medical information recorded included the presence of comorbid illnesses, pre-existing valvular disease other than valve replacement, infected valve, and involvement of native versus prosthetic valve. Nosocomial risk factors were defined as the presence of prosthetic medical devices other than artificial heart valves, such as pacemakers, ventriculoperitoneal shunts, and the use of intravascular devices. Primary outcomes of interest were need for valve replacement and mortality. Nomenclature for Corynebacterium species was based on those approved by the International Code of Nomenclature of Bacteria and species identification was classified as reported in the original source document [8]. Statistical analysis was done using SPSS® version 13.0 (Chicago, IL). Univariate analysis was conducted with chi-square and t-tests, as appropriate, with p = 0.05 (two sided) was considered statistically significant. In three cases, Corynebacterium endocarditis was found to have only a single case for that unique species. These were excluded from the analysis because of their small numbers simultaneously added little to the analysis and because of the potential bias from the intrinsic marked skew that results from inclusion of data where a single case provides 100% of the data points for an entire species. Study received approval of the Institutional Review Board and was conducted in accordance with the Helsinki declaration.

Case Report

A 62 year-old man with a history of hypertension, alcoholism, and mild renal insufficiency, presented to our hospital with a two-day history of fevers, lower back pain, and new onset of urinary retention. One week prior to admission, the patient had undergone diagnostic cardiac catheterization for new onset of atrial fibrillation and had been started on coumadin. Other medications prior to admission were digoxin, diltiazem, furosemide, lisinopril, metoprolol, omeprazole, simvastatin, coumadin. Vital signs on admission were: blood pressure 100/60, temperature 101.4°F, heart rate 100, respiratory rate 20, He had an irregular heart rhythm without murmurs and mild right flank pain. There was a small non-tender and non-purulent ecchymotic area in the right groin at the site of previous catheterization. His neurologic exam was nonfocal except for new 4/5 bilateral lower extremity weakness. White blood cell count was 18.4 K/mm3, with 75% neutrophils and 12% bands. Hemoglobin and platelets were normal. Sodium 128 mmol/L, blood urea nitrogen 46 mmol/L, creatinine 1.7 mmol/L. INR was 11.21. Amylase and lipase were 557 and 325. A chest x-ray, and a computed tomography (CT) scan of the lumbar spine were unremarkable. A CT scan of the abdomen showed mild early pancreatitis without dilatation of the biliary tree. Blood and urine cultures were sent and the patient was diagnosed with mild pancreatitis and coagulopathy secondary to coumadin overdose. He was was started on intravenous levofloxacin 500 mg, with resolution of the fever by the next day. He received vitamin K and his coumadin was temporarily stopped.. Over the next days, his INR decreased to 1.3 and his abdominal pain and leukocytosis improved, but the back pain and urinary retention continued. By the sixth day of admission, he complained of stool incontinence. A magnetic resonance image (MRI) study of the lumbar spine showed inflammatory diskitis with fluid in the L5/S1 disc space, along with osteomyelitis and a posterior epidural abscess with moderate-to-severe vertebral canal stenosis. The Spine Surgery Service was consulted, but they felt that the neurological findings were not explained by the lesion seen on MRI and recommended non-operative management.

Blood cultures from admission later grew Gram-positive bacilli, and repeat cultures confirmed Corynebacterium striatum bacteremia on the sixth day of admission. At this time, antibiotics were changed to vancomycin 1500 mg iv daily with subsequent improvement of the back pain, urinary retention and stool incontinence. Follow up blood cultures were negative. A transesophageal echocardiogram (TEE) revealed moderate aortic insufficiency and a 3–4 mm vegetation on the non-coronary cusp of the aortic valve, with a perforation at the same site. Cardiovascular surgery recommended that a valve replacement be deferred pending initial antibiotic treatment. A follow-up MRI of the spine reported no significant change on the fluid collection. Surgery was offered, but the patient refused stating he felt decreased weakness and wanted to pursue a conservative management. Over the next days, the patient showed progressive improvement in his lower extremity strength and was able to ambulate with the help of a physical therapist. His urinary retention and bowel dysfunction improved as well.

Three weeks later, the patient became febrile and acutely dyspneic. An emergent TEE showed an increase in the regurgitant jet through the aortic valve perforation. The patient underwent emergency coronary aortic bypass grafting and aortic valve replacement. Pathology of the aortic valve revealed a heavily calcified aortic valve, and the gram stain showed gram positive coccobacilli. Cultures of the valves were negative, however, the valve had been mistakenly placed on formalin prior to submission to the Microbiology Laboratory. The patient did well postoperatively and was discharged on intravenous vancomycin. At a two-month follow-up appointment the patient's back pain had resolved and an MRI showed resolution of the epidural abscess. Post treatment surveillance blood cultures were sterile after a total of 12 weeks of intravenous vancomycin after his discharge from the hospital. At follow up over two years later the patient remained infection free.

Results

Our search returned 172 cases of Corynebacterium endocarditis with meaningful patient-level clinical data. Of these, 43 (25.0%) were excluded (Table 1). In 21 cases (48.8%) the isolates were not identified to a species level, 14 cases (32.5%) they were identified only as "diphtheroids", and seven cases (16.3%) were single or double cases identified only by their CDC group (Table 1). C. tuscaniae, C. accolens, and C. pyogenes were excluded as they each contributed only a single case and were not amenable to analysis. Fourteen cases (32.5%) were excluded because they lacked documentation identifying which specific valve was infected or information on our primary outcomes (valve replacement and death). Five cases (11.6%) were infections of pacemakers, prosthetic devices other than heart valves, or involved non-heart valve locations.

Table 1 Excluded cases of Corynebacterium endocarditis (N = 43)

129 cases (75.0%) had sufficiently detailed patient-level information to be included in the final analysis. Details of the clinical and epidemiological findings of these cases are found in Table 2 [[696],97]. Species encountered included 60 cases (46.5%) of non-toxigenic C. diphtheriae (NTCD), 18 cases (14.0%) of C. pseudodiphtheriticum, 14 cases (10.9%) of C. striatum, 14 cases (10.9%) of toxigenic C. diphtheriae (TCD), 13 cases (10.1.%) of C. jeikeium, and four cases (3.1%) of C. xerosis. Finally, C. amycolatum, C. minutissimum, and C. hemolyticum each were responsible for two cases of endocarditis.

Table 2 Corynebacterium endocarditis: risk factors and outcomes by Corynebacterium species.

Patients' age ranged from 4 to 88 years (mean age 35.7 ± 22.9), and 93 (72.1%) were male.

Among all cases, previous valvular disease was present in 40 (31.0%) of the cases, including a previous valvular replacement in 25 cases (19.3%). Predisposing nosocomial risk factors were present in ten patients (7.7%). Left-sided endocarditis was present in 94.6% of the cases. Therapeutic valve replacement was required in 36 cases (27.9%). Mortality attributable to Corynebacterium endocarditis infection was high, with 56 patients (43.4%) succumbing to their infection.

C. amycolatum infections were more frequent in women (100%, p = 0.024), while C. pseudodiphteriticum infections were more frequently found in men (93.8%, p = 0.023). Species-specific age-related associations were also noted. In general, most Corynebacterium species were more likely to cause endocarditis in adults (attaining statistical significance for C. striatum, C. jeikeium, and NTCD, p = 0.018, p = 0.024, and p = 0.012, respectively), while TCD was the only species that infected children more frequently (p < 0.001).

All of the species showed a predilection for left-sided endocarditis (Table 2), but no species had a statistically significant predilection for any particular valve. There were no significant differences among species' associations with a history of previous valvular disease other than in cases of prior valve replacement, where C. pseudodiphtheriticum was found to more commonly infect prosthetic valves (p = 0.004). C. striatum, C. jeikeium, and C. hemolyticum were more commonly associated with a nosocomial risk factors (p < 0.001, p = 0.028, p = 0.024, respectively). C. jeikeium endocarditis was also the most likely to require valve replacement as a result of the infection (53.8%, p = 0.026). Overall, valve replacement was required in 27.9% of cases, but there were no significant differences in the likelihood of need for valve replacement among the other species.

Overall survival in Corynebacterium endocarditis across all species was 56.6%. C. striatum was associated with the highest survival rate (78.6%, p = 0.074). In contrast, TCD and C. pseudodiphtheriticum were associated with a poorer survival than other species (14.3%, p = 0.001 and 33.3%, p = 0.032, respectively).

Discussion

We conducted the largest detailed patient-level analysis of Corynebacterium endocarditis to date, and report the first species-specific associations for these infections. Foremost, we believe that our findings highlight the seriousness of Corynebacterium endocarditis, as over one quarter of patients required valve replacement and mortality was 43.4%. Overall,Corynebacterium endocarditis typically infects adult males and has a strong predilection for left sided involvement; nearly one-third of patients have underlying valvular disease.

Our study found significant differences in species-specific risk factors in Corynebacterium endocarditis, including age and gender associations, underlying clinical risk factors, predilection for prosthetic valves, as well as notable differences in clinical outcomes, such as need for valve replacement and survival.

The species-specific analysis revealed a strong gender predilection for two Corynebacterium species. C. amycolatum infections occurred exclusively in females while C. pseudodiphteriticum occurred overwhelmingly in males. Age-related species-specific findings were also noted. NTCD, C. striatum and C. jeikeium have significant predilection for adults. In contrast to NTCD, TCD is significantly more common in children, as consistent with previous literature and historic associations. In addition, adults are more likely than children to have a Corynebacterium endocarditis of nosocomial origin (p = 0.050), which is likely to reflect a greater likelihood of prosthetic medical devices, invasive procedures, and intravascular access in the adult population. While not reaching statistical significance, adults were also more likely to have endocarditis of a prosthetic valve (p = 0.073). This is likely to reflect a greater prevalence of prosthetic valves in the adult population.

Species-specific associations with a nosocomial origin were found for C. striatum, C. jeikeium, and C. hemolyticum. While these species are associated with nosocomial risk factors, they were not associated with a higher incidence of need for valve replacement or greater mortality. Of all Corynebacterium species, only C. pseudodiphtheriticum showed a predilection for prosthetic versus native valves. This species was also found to have a statistically significant increase in mortality, with two thirds of cases not surviving their infection. An unexpected finding is the greater probability of valve replacement (p = 0.014) and mortality (p = 0.001) found in TCD endocarditis. It is possible that this might be due, in part, to including older reports from time periods when antibiotic drugs and other therapeutic measures were unavailable or less effective fro managing endocarditis. However, even recent reports of TCD endocarditis have shown a high risk of complications and death even in the setting of previous immunization and modern antibiotic treatment regimens [52, 64]. Of all Corynebacterium species, C. striatum endocarditis was associated with the greatest likelihood of survival, with more than three quarter of cases surviving the infection. In contrast, only one third of C. pseudodiphtheriticum cases, and one in six TCD cases survived.

There are several limitations to this study which should be considered. This search was limited to English language journals and did not include cases published in other languages. We recognize that classification of isolates and nomenclature for Corynebacterium may have changed over the time period that is encompassed by the source publications included in our analysis, and that new molecular analysis techniques have led to the reclassification of some isolates, and may impact our findings. Similarly, we recognize our acceptance of cases as endocarditis is based on source publication reports and we did not personally review the original microbiology, pathology, or imaging studies on these cases. These are well-recognized intrinsic limitations to retrospective studies and reviews of published data. While every effort was made for accuracy, we are limited to the information available in these published reports, and we can not predict how additional unpublished cases would affect our findings. This is equally true for the cases where insufficient detailed data forced exclusion from the analysis. It is possible that the associations described in this study could change as more information is available. This is especially true for those species that were least encountered but kept in our analysis (e.g., C. hemolyticum, C. minutissimum, and C. xerosis) or excluded because we could only identify a single case for this unique species (C. tuscaniae, C. accolens, and C. pyogenes).

Conclusion

Our study reveals a number of hitherto fore unknown species-specific associations between risk factors and outcomes in Corynebacterium endocarditis, including for demographic factors (gender and age), clinical factors (nosocomial risk factors, prosthetic valves), as well as outcomes (need for valve replacement and survival). Clinicians would be wise to keep these organisms in mind as rare causes of endocarditis, particularly when managing patients who present with bacteremia due to gram positive rods.

References

  1. 1.

    Meyer D, Reboli A: Other Corynebacteria and Rhodococcus. Principles and Practice of Infectious Diseases. Edited by: GLM. 2000, New York: Churchill Livingstone, 1: 2198-2208. 5

    Google Scholar 

  2. 2.

    Fernandez-Ayala M, Nan D, Farina M: Vertebral osteomyelitis due to Corynebacterium striatum. Am J Med. 2001, 11: 167-10.1016/S0002-9343(01)00739-2.

    Article  Google Scholar 

  3. 3.

    Berbari E, Cockerill F, Steckelberg J: Infective endocarditis due to unusual or fastidious microorganisms. Mayo Clin Proc. 1997, 72: 532-542.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Murray B, Karchmer A, Moellering R: Diphtheroid prosthetic valve endocarditis: a study of clinical features and infecting organisms. Am J Med. 1980, 69: 838-848.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Tiley S, Kociuba K, Heron L, Munro R: Infective endocarditis due to nontoxigenic Corynebacterium diphtheriae: Report of seven cases and review. Clin Infect Dis. 1993, 16: 271-275.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Knox K, Holmes A: Nosocomial endocarditis caused by Corynebacterium amycolatum and other nondiphtheriae corynebacteria. Emerg Infect Dis. 2002, 1: 97-99.

    Article  Google Scholar 

  7. 7.

    Tattevin P, Cremieux A, Muller-Serieys C, Carbon C: Native valve endocarditis due to Corynebacterium striatum: first reported case of medical treatment alone. Clin Infect Dis. 1996, 23: 1330-1331.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    "Bacterial nomenclature uptodate". Accessed on 14 September 2006., [http://www.dsmz.de/microorganisms/main.php?contentleft_id=14]

  9. 9.

    Markowitz S, Coudron P: Native valve endocarditis caused by an organism resembling Corynebacterium striatum. J Clin Microbiol. 1990, 28: 8-10.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rufael DW, Cohn S: Native valve endocarditis due to Corynebacterium striatum: case report and review. Clin Infect Dis. 1994, 19: 1054-1061.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Juurlink D, Borczyk A, Simor A: Native valve endocarditis due to Corynebacterium striatum. Eur J Clin Microbiol Infect Dis. 1996, 12: 963-965. 10.1007/BF01690520.

    Article  Google Scholar 

  12. 12.

    Houghton T, Kaye G, Meigh R: An unusual case of infective endocarditis. Postgrad Med J. 2002, 78: 290-291. 10.1136/pmj.78.919.290.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kocazeybek B, Ozder A, Kucukoglu S, Kucukates E, Yuksel H, Olga R: Report of a case with polymicrobial endocarditis related to multiresistant strains. Chemotherapy. 2002, 48: 316-319. 10.1159/000069710.

    Article  PubMed  Google Scholar 

  14. 14.

    de Arriba J, Blanch J, Mateos F, Martinez-Alfaro E, Solera J: Corynebacterium striatum first reported case of prosthetic valve endocarditis. J Infect. 2002, 44: 193-10.1053/jinf.2001.0927.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Stoddart B, Sandoe J, Denton M: Corynebacterium striatum endocarditis masquerading as connective tissue disorders. Rheumatology. 2005, 44: 557-8. 10.1093/rheumatology/keh519.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ross MJ, Sakoulas G, Manning W, Cohn W, Lisbon A: Corynebacterium jeikeium native valve endocarditis following femoral access for coronary angiography. Clin Infect Dis. 2001, 32: E120-121. 10.1086/319592.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lee P, Ferguson D, Sarubbi F: Corynebacterium striatum: An underappreciated community and nosocomial pathogen. J Infect. 2005, 50: 338-343. 10.1016/j.jinf.2004.05.005.

    Article  PubMed  Google Scholar 

  18. 18.

    Morris A, Guild I: Corynebacterium pseudodiphtheriticum endocarditis. Five case reports. Rev Infect Dis. 1991, 13: 887-892.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Spach D, Celum C, Kirby P, Sheffield J: Palpable purpura associated with Corynebecterium jeikeium. Arch Dermatol. 1991, 27: 1071-10.1001/archderm.127.7.1071.

    Article  Google Scholar 

  20. 20.

    Wilson M, Shapiro D: Native valve endocarditis due to Corynebacterium pseudodiphtheriticum. Clin Infect Dis. 1992, 15: 1059-1060.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Barritt DW, Gillespie WA: Subacute bacterial endocarditis. BMJ. 1960, 5181: 1235-1239.

    Article  Google Scholar 

  22. 22.

    Gubler J, Huber-Schnieder C, Gruner E, Altwegg M: An outbreak of nontoxigenic Corynebacterium diphtheriae infection: single bacterial clone causing invasive infection among Swiss drug users. Clin Infect Dis. 1998, 27: 1295-1298.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Namnyak S, Bhat R, Al-Jama A, Fathalla S: Prosthetic valve endocarditis caused by Corynebacterium diphtheriae in a patient with pemphigus vulgaris. J Clin Microbiol. 1987, 25: 1330-1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pennie R, Malik A, Wilcox L: misidentification of Corynebacterium diphtheriae as a Corynebacterium species with low virulence in a child with endocarditis. J Clin Microbiol. 1996, 34: 1275-1276.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lortholary O, Buu-Hoi A, Gutmann L, Acar J: Corynebacterium diphtheriae endocarditis in France. Clin Infect Dis. 1993, 17: 1072-1074.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Trepeta R, Edberg S: Corynebacterium diphtheriae endocarditis: sustained potential of a classical pathogen. Am J Clin Path. 1984, 81: 679-683.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Belko J, Wessel D, Malley R: Endocarditis caused by Corynebacterium diphtheriae: case report and review of the literature. Pediatric Inf Dis J. 2000, 19: 159-163. 10.1097/00006454-200002000-00015.

    CAS  Article  Google Scholar 

  28. 28.

    Almklov J, Hansen A: Successful treatment of C. diphtheriae with penicillin and streptomycin. Pediatrics. 1950, 5: 437-442.

    Google Scholar 

  29. 29.

    Davidson S, Rotem Y, Bogowski B, Rubeinstein E: Corynebacterium diphtheriae endocarditis. Am J Med Sci. 1976, 271: 351-353.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Sandler M: Corynebacterium diphtheriae endocarditis in an adult with congenital heart disease. S Afr Med J. 1982, 61: 594-

    CAS  PubMed  Google Scholar 

  31. 31.

    Martino P, Micozzi A, Vendetti M, Gentile G, Girmenia C, Raccah R, Santilli S, Alessandri N, Mandelli F: Catheter related right – sided endocarditis in bone marrow transplant recipients. Rev Inf Dis. 1990, 12: 250-253.

    CAS  Article  Google Scholar 

  32. 32.

    Sirinavin S, Suthas-Na-Ayutha P: Diphtheric septicemia and probable endocarditis: a case review and report of the literature. Eur J Pediatr. 1985, 144: 394-398. 10.1007/BF00441786.

    Article  Google Scholar 

  33. 33.

    Sirisanthana V, Sirisanthana T: Corynebacterium diphtheriae endocarditis. Pediatr Inf Dis. 1983, 2: 470-471.

    CAS  Article  Google Scholar 

  34. 34.

    Etienne J, Barthelet M, Ninet J, Vandenesch F, Fleurette J: Corynebacterium group JK endocarditis after dental extraction under antibiotic cover. J Infect. 1988, 17: 188-9. 10.1016/S0163-4453(88)92047-6.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Martinez-Vea A, Costa J, Garcia C, Bardaji A, Ridao C, Ribas M, Richart C, Oliver JA: Corynebacterium group JK endocarditis in a hemodialysis patient. Nephrol Dial Transplant. 1993, 8: 177-9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Cauda R, Tamburrini E, Ventura G, Ortona L: Effective vancomycin therapy for Corynebacterium pseudodiphtheriticum endocarditis. South Med J. 1987, 80: 1598-

    CAS  PubMed  Google Scholar 

  37. 37.

    Lindner PS, Hardy DJ, Murphy TF: Endocarditis due to Corynebacterium pseudodiphtheriticum. N Y State J Med. 1986, 86: 102-4.

    CAS  PubMed  Google Scholar 

  38. 38.

    Tow A: Diphtheroid bacillus as the cause of acute endocarditis. Am J Dis Child. 1932, 44: 156-61.

    Google Scholar 

  39. 39.

    Ollinger MG: Mixed infection in subacute bacterial endocarditis: report of two cases. Arch Intern Med. 1948, 81: 38-41.

    Article  Google Scholar 

  40. 40.

    Johnson WD, Cobbs CG, Arditi LI, Kaye D: Diphtheroid endocarditis after insertion of a prosthetic heart valve. Report of two cases. JAMA. 1968, 203: 919-21. 10.1001/jama.203.11.919.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Blount JG: Bacterial endocarditis. Am J Med. 1965, 38: 90-2. 10.1016/0002-9343(65)90010-0.

    Article  Google Scholar 

  42. 42.

    Wise JR, Cleland WP, Hallidie-Smith KA, Bentall HH, Goodwin JF, Oakley CM: Urgent aortic-valve replacement for acute aortic regurgitation due to infective endocarditis. Lancet. 1971, 2: 115-21. 10.1016/S0140-6736(71)92300-2.

    Article  PubMed  Google Scholar 

  43. 43.

    Leonard A, Raij L, Shapiro FL: Bacterial endocarditis in regularly dialyzed patients. Kidney Int. 1973, 4: 407-22.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Boyce JM: A case of prosthetic valve endocarditis caused by Corynebacterium hoffmannii and Candida albicans. Br Heart J. 1975, 37: 1195-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rubler S, Harvey L, Avitabile A, Abenavoli T: Mitral valve obstruction in a case of bacterial endocarditis due to Corynebacterium hoffmannii: echocardiographic diagnosis. N Y State J Med. 1982, 11: 1590-4.

    Google Scholar 

  46. 46.

    Hogg GG, Strachan JE, Huayi L, Beaton SA, Robinson PM, Taylor K: Non-toxigenic Corynebacterium diphtheriae biovar gravis: evidence for an invasive clone in a south-eastern Australian community. Med J Aust. 1996, 164: 72-5.

    CAS  PubMed  Google Scholar 

  47. 47.

    Pike C: Corynebacterium endocarditis with report of a case due to toxigenic Corynebacterium diphtheriae. J Pathol. 1951, 63: 577-85. 10.1002/path.1700630404.

    CAS  Article  Google Scholar 

  48. 48.

    Horst R, Dyer D, Hallett A: Fulminant diphtheritic mitral valve endocarditis. Arch Dis Child. 1976, 51: 227-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Juffe A, Miranda AL, Rufilanchas JJ, Maronas JM, Figuero D: Prosthetic valve endocarditis by opportunistic pathogens. Arch Surg. 1977, 112: 151-3.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Guard RW: Non-toxigenic Corynebacterium diphtheriae causing subacute bacterial endocarditis: case report. Pathology. 1979, 11: 533-5.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Love JW, Medina D, Anderson S, Braniff B: Infective endocarditis due to Corynebacterium diphtheriae: report of a case and review of the literature. Johns Hopkins Med J. 1981, 148: 41-2.

    CAS  PubMed  Google Scholar 

  52. 52.

    Marcus JC, Spector I, Chin WW, Levin SE: Infective endocarditis due to non-toxigenic Corynebacterium diphtheriae in a child. A case report. S Afr Med J. 1983, 63: 285-7.

    CAS  PubMed  Google Scholar 

  53. 53.

    Melero-Bascones M, Munoz P, Rodriguez-Creixems M, Bouza E: Corynebacterium striatum: an undescribed agent of pacemaker-related endocarditis. Clin Infect Dis. 1996, 22: 576-7.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Zasada AA, Zaleska M, Podlasin RB, Seferynska I: The first case of septicemia due to nontoxigenic Corynebacterium diphtheriae in Poland: case report. Ann Clin Microbiol Antimicrob. 2005, 4: 8-10.1186/1476-0711-4-8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Riegel P, Creti R, Mattei R, Nieri A, von Hunolstein C: Isolation of Corynebacterium tuscaniae sp. nov. from blood cultures of a patient with endocarditis. J Clin Microbiol. 2006, 44: 307-12. 10.1128/JCM.44.2.307-312.2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mashavi M, Soifer E, Harpaz D, Beigel Y: First report of prosthetic mitral valve endocarditis due to Corynebacterium striatum: successful medical treatment. Case report and literature review. J Infect. 2006, 52: e139-41. 10.1016/j.jinf.2005.08.027. Epub 2005 Oct 19.

    Article  PubMed  Google Scholar 

  57. 57.

    Claeys G, Vanhouteghem H, Riegel P, Wauters G, Hamerlynck R, Dierick J, de Witte J, Verschraegen G, Vaneechoutte M: Endocarditis of native aortic and mitral valves due to Corynebacterium accolens: report of a case and application of phenotypic and genotypic techniques for identification. J Clin Microbiol. 1996, 34: 1290-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    de Mattos-Guaraldi AL, Formiga LC: Bacteriological properties of a sucrose fermenting Corynebacterium diphtheriae strain isolated from a case of endocarditis. Curr Microbiol. 1998, 37: 156-8. 10.1007/s002849900356.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Pessanha B, Farb A, Lwin T, Lloyd B, Virmani R: Infectious endocarditis due to Corynebacterium xerosis. Cardiovasc Pathol. 2003, 12: 98-101. 10.1016/S1054-8807(02)00181-3.

    Article  PubMed  Google Scholar 

  60. 60.

    Daniels C, Schoors D, Van Camp G: Native valve endocarditis with aorta-to-left atrial fistula due to Corynebacterium amycolatum. Eur J Echocardiogr. 2003, 4: 68-70. 10.1053/euje.2002.0176.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Mookadam F, Cikes M, Baddour LM, Tleyjeh IM, Mookadam M: Corynebacterium jeikeium endocarditis: a systematic overview spanning four decades. Eur J Clin Microbiol Infect Dis. 2006, 25: 349-53. 10.1007/s10096-006-0145-8.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Shah M, Murillo JL: Successful treatment of Corynebacterium striatum endocarditis with daptomycin plus rifampin. Ann Pharmacother. 2005, 39: 1741-4. 10.1345/aph.1G242. Epub 2005 Sep 6.

    Article  PubMed  Google Scholar 

  63. 63.

    Mishra B, Dignan RJ, Hughes CF, Hendel N: Corynebacterium diphtheriae endocarditis–surgery for some but not all!. Asian Cardiovasc Thorac Ann. 2005, 13: 119-26.

    Article  PubMed  Google Scholar 

  64. 64.

    Lolekha R, Supradish P, Kirawittaya T, Srimaharaja S, Chotpitayasunondh T: Subacute infective endocarditis caused by Corynebacterium diphtheriae: a case report. J Med Assoc Thai. 2003, 86: S696-700.

    PubMed  Google Scholar 

  65. 65.

    Burnell RH, Richardson ME: Fever, cardiac failure and arteritis in a child with rheumatic carditis. Pediatr Infect Dis J. 1997, 16: 422-3.

    Article  Google Scholar 

  66. 66.

    Booth LV, Ellis C, Wale MC, Vyas S, Lowes JA: An atypical case of Corynebacterium diphtheriae endocarditis and subsequent outbreak control measures. J Infect. 1995, 31: 63-5. 10.1016/S0163-4453(95)91519-2.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Malik AS, Johari MR: Pneumonia, pericarditis, and endocarditis in a child with Corynebacterium xerosis septicemia. Clin Infect Dis. 1995, 20: 191-2.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Lin RV, Lim SC, Yew FS, Tan SY, Tey BH: Corynebacterium diphtheriae endocarditis in an adult with congenital heart disease: a case report. J Trop Med Hyg. 1994, 97: 189-91.

    CAS  PubMed  Google Scholar 

  69. 69.

    David CA, Horowitz MD, Burke GW: Aortic valve endocarditis in a liver transplant recipient–successful management by aortic valve replacement. Transplantation. 1992, 53: 1366-7.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Malanoski GJ, Parker R, Eliopoulos GM: Antimicrobial susceptibilities of a Corynebacterium CDC group I1 strain isolated from a patient with endocarditis. Antimicrob Agents Chemother. 1992, 36: 1329-31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Zuber PL, Gruner E, Altwegg M, von Graevenitz A: Invasive infection with non-toxigenic Corynebacterium diphtheriae among drug users. Lancet. 1992, 339: 1359-10.1016/0140-6736(92)92004-Y.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Lifshitz A, Arber N, Pras E, Samra Z, Pinkhas J, Sidi Y: Corynebacterium CDC group A-4 native valve endocarditis. Eur J Clin Microbiol Infect Dis. 1991, 10: 1056-7. 10.1007/BF01984928.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Adler AG, Blumberg EA, Schwartz DA, Russin SJ, Pepe R: Seven-pathogen tricuspid endocarditis in an intravenous drug abuser. Pitfalls in laboratory diagnosis. Chest. 1991, 99: 490-1.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Ena J, Berenguer J, Pelaez T, Bouza E: Endocarditis caused by Corynebacterium group D2. J Infect. 1991, 22: 95-6. 10.1016/0163-4453(91)91150-V.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Szabo S, Lieberman JP, Lue YA: Unusual pathogens in narcotic-associated endocarditis. Rev Infect Dis. 1990, 12: 412-5.

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Farrer W: Four-valve endocarditis caused by Corynebacterium CDC group I1. South Med J. 1987, 80: 923-5. 10.1097/00007611-198707000-00031.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Chandrasekar PH, Molinari JA: Corynebacterium hemolyticum bacteremia with fatal neurologic complication in an intravenous drug addict. Am J Med. 1987, 82: 638-40. 10.1016/0002-9343(87)90114-8.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Arnold AZ: Corynebacterium endocarditis. Difficult diagnosis in an elderly woman. Postgrad Med. 1987, 81: 283-7.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Levine DP, Crane LR, Zervos MJ: Bacteremia in narcotic addicts at the Detroit Medical Center. II. Infectious endocarditis: a prospective comparative study. Rev Infect Dis. 1986, 8: 374-96.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Worthington MG, Daly BD, Smith FE: Corynebacterium hemolyticum endocarditis on a native valve. South Med J. 1985, 78: 1261-2.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Herschorn BJ, Brucker AJ: Embolic retinopathy due to Corynebacterium minutissimum endocarditis. Br J Ophthalmol. 1985, 69: 29-31.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Eliakim R, Silkoff P, Lugassy G, Michel J: Corynebacterium xerosis endocarditis. Arch Intern Med. 1983, 143: 1995-10.1001/archinte.143.10.1995.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Ben-Chetrit E, Nashif M, Levo Y: Infective endocarditis caused by uncommon bacteria. Scand J Infect Dis. 1983, 15: 179-83.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Cookson WO, Harris AR: Diphtheroid endocarditis after electrolysis. Br Med J (Clin Res Ed). 1981, 282: 1513-4.

    CAS  Article  Google Scholar 

  85. 85.

    Leonard A, Raij L, Shapiro FL: Bacterial endocarditis in regularly dialyzed patients. Kidney Int. 1973, 4: 407-22.

    CAS  Article  PubMed  Google Scholar 

  86. 86.

    Ribush N: Probable diphtheroid endocarditis. Med J Aust. 1969, 1: 396-8.

    CAS  PubMed  Google Scholar 

  87. 87.

    Martinak JF, Wyso EM: Corynebacterium endocarditis. N Y State J Med. 1968, 68: 2197-8.

    CAS  PubMed  Google Scholar 

  88. 88.

    Merzbach D, Freundlich E, Metzker A, Falk W: Bacterial endocarditis due to Corynebacterium. Report of 2 cases. J Pediatr. 1965, 67: 792-6. 10.1016/S0022-3476(65)80368-7.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Vaneechoutte M, De Bleser D, Claeys G, Verschraegen G, De Baere T, Hommez J, Devriese LA, Riegel P: Cardioverter-lead electrode infection due to Corynebacterium amycolatum. Clin Infect Dis. 1998, 27: 1553-4.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Gerry JL, Greenough WB: Diphtheroid endocarditis. Report of nine cases and review of the literature. Johns Hopkins Med J. 1976, 139: 61-8.

    CAS  PubMed  Google Scholar 

  91. 91.

    Aperis G, Moyssakis I: Corynebacterium minutissimumendocarditis: A case report and review. J Infect. 2006 Jun 4,

  92. 92.

    Federmann M, Dirsch OR, Jenni R: Pacemaker endocarditis. Heart. 1996, 75: 446-

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Vanbosterhaut B, Surmont I, Vandeven J, Wauters G, Vandepitte J: Corynebacterium jeikeium (group JK diphtheroids) endocarditis. A report of five cases. Diagn Microbiol Infect Dis. 1989, 12: 265-8. 10.1016/0732-8893(89)90025-4.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Holthouse DJ, Power B, Kermode A, Golledge C: Non-toxigenic Corynebacterium diphtheriae: two cases and review of the literature. J Infect. 1998, 37: 62-6. 10.1016/S0163-4453(98)90690-9.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Roder BL, Frimodt-Moller N: Corynebacterium xerosis as a cause of community acquired endocarditis. Eur J Clin Microbiol Infect Dis. 1990, 9: 233-4. 10.1007/BF01963847.

    CAS  Article  PubMed  Google Scholar 

  96. 96.

    Jootar P, Gherunpong V, Saitanu K: Corynebacterium pyogenes endocarditis. Report of a case with necropsy and review of the literature. J Med Assoc Thai. 1978, 61: 596-601.

    CAS  PubMed  Google Scholar 

Pre-publication history

  1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/7/4/prepub

Download references

Acknowledgements

Written consent was obtained to include the patient's medical history in this study. There was no source of funding for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaime Belmares.

Additional information

Competing interests

None of the authors have potential conflicts of interest to report, although JPP serves on the Speakers' Bureau of Pfizer and Elan Pharmaeuticals, and serves as site principal investigator for clinical trials sponsored by GlaxoSmithKline and Pfizer Pharmaceuticals

Authors' contributions

JPP conceived and oversaw the study and manuscript development. JB and JBP contributed a new case report of C. striatum endocarditis. All authors contributed to the reviews and evaluated the case series report. JB and JPP developed the database, analyzed and interpreted the data. All authors contributed to the writing of the manuscript.

Jaime Belmares, Stephanie Detterline, Janet B Pak and Jorge P Parada contributed equally to this work.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Belmares, J., Detterline, S., Pak, J.B. et al. Corynebacteriumendocarditis species-specific risk factors and outcomes. BMC Infect Dis 7, 4 (2007). https://doi.org/10.1186/1471-2334-7-4

Download citation

Keywords

  • Endocarditis
  • Valve Replacement
  • Prosthetic Valve
  • Epidural Abscess
  • Corynebacterium Species