Salinas-Escudero G, Toledano-Toledano F, García-Peña C, Parra-Rodríguez L, Granados-García V, Carrillo-Vega MF. Disability-adjusted life years for the COVID-19 pandemic in the Mexican population. Front Public Health. 2021;9(686700):1–9.
Google Scholar
Statista. statista.com. 2022. https://www.statista.com/statistics/1093256/novel-coronavirus-2019ncov-deaths-worldwide-by-country/. Accessed 17 May 2022.
World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2022. https://covid19.who.int/. Accessed 17 May 2022.
Monterrubio-Flores E, Ramírez-Villalobos M, Espinosa-Montero J, Hernandez B, Barquera S, Villalobos-Daniel VE, et al. Characterizing a two-pronged epidemic in Mexico of non-communicable diseases andSARS-Cov-2: factors associated with increased case-fatality rates. Int J Epidemiol. 2021; 50(2):1–16.
Gutierrez J, Bertozzi SM. Non-communicable diseases and inequalities increase risk of death among COVID-19 patients in Mexico. PLoS ONE. 2020;15(10):1–11.
Article
Google Scholar
Knaul FM, Touchton M, Arreola-Ornelas H, Atun R, Calderon Anyosa R, Frenk J, et al. Punt politics as failure of health system stewardship: evidence from the COVID-19 pandemic response in Brazil and Mexico. Lancet Regional Health - Americas. 2021;4(100086):1–11.
Google Scholar
Malik P, Patel U, Mehta D, Patel M, Kelkar R, Akrmah M, et al. Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evid-Based Med. 2021;26(3):107–8.
Article
Google Scholar
Prado-Galbarro FJ, Sanchez-Piedra C, Gamiño-Arroyo AE, Cruz-Cruz C. Determinants of survival after severe acute respiratory syndrome coronavirus 2 infection in Mexican outpatients and hospitalised patients. Public Health. 2020;30(189):66–72.
Article
Google Scholar
Domínguez-Olmedo JL, Gragera-Martínez , Mata J, Pachón Álvarez V. Machine learning applied to clinical laboratory data in Spain for COVID-19 outcome prediction: model development and validation. J Med Internet Res. 2021; 23(4): 1-11.
Çubukçu HC, Topcu Dİ, Bayraktar N, Gülşen M, Sarı N, Arslan AH. Detection of COVID-19 by machine learning using routine laboratory tests. Am J Clin Pathol. 2021; 157(5): 758–66.
Khuzani AZ, Heidari M, Shariati SA. COVID-Classifier: an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. medRxiv. 2020; 2.
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020; 369(1328): 1–16.
Defazio A, Bach F, Lacoste-Julien S. SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. arXiv. 2014.
Murphy KP. Machine learning: a probabilistic perspective. Cambridge: The MIT Press; 2012.
Google Scholar
Scornet E. Tuning parameters in random forests. ESAIM: Procs. 2017; 60: 144–162.
Budholiya K, Shrivastava K, Sharma V. An optimized XGBoost based diagnostic system for effective prediction of heart disease. J King Saud Univ Comput Inform Sci. 2022;34:4514–23.
Google Scholar
Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Long Beach: Curran Associates, Inc.; 2017.
Molnar C. Interpretable Machine Learning A Guide for Making Black Box Models Explainable. 2a ed. München, Germany: Independently published; 2022: 328.
Thimoteo L, Vellasco MM, do Amaral JM, Figueiredo K, Yokoyama CL, Marques E. Interpretable machine learning for COVID-19 diagnosis through clinical variables. Soc Brasil Autom. 2020;2(1):1–8.
Google Scholar
Yang R. Who dies from COVID-19? Post-hoc explanations of mortality prediction models using coalitional game theory, surrogate trees, and partial dependence plots. medRixv. 2020; 1–17.
Vázquez B, Fuentes-Pineda G, García F, Borrayo G, Prohías J. Risk markers by sex for in-hospital mortality in patients with acute coronary syndrome: a machine learning approach. Inform Med Unlocke. 2021;27:1–13.
Article
Google Scholar
Undela K, Gudi S. Assumptions for disparities in case-fatality rates of coronavirus disease (COVID-19) across the globe. Eur Rev Med Pharmacol Sci. 2020;24(9):5180–2.
CAS
Google Scholar
Mancilla-Galindo J, Vera-Zertuche JM, Navarro-Cruz AR, Segura-Badilla O, Reyes-Velázquez G, Tepepa-López J, et al. Development and validation of the patient history COVID-19 (PH-Covid19) scoring system: a multivariable prediction model of death in Mexican patients with COVID-19. Epidemiol Infect. 2020;148:1–8.
Article
Google Scholar
Bello-Chavolla OY, Antonio-Villa NE, Ortiz-Brizuela E, Vargas-Vázquez A, González-Lara MF, Ponce de Leon A, et al. Validation and repurposing of the MSLCOVID-19 score for prediction of severe. PLoS ONE. 2020;15(12):1–14.
Google Scholar
Aktar S, Talukder A, Ahamad MM, Kamal AHM, Khan RJ, Liaw T, et al. Machine learning approaches to identify patient comorbidities and symptoms that increased risk of mortality in COVID-19. Diagnostics. 2021;11(8):1–18.
Article
Google Scholar
Cini Oliveira M, de Araujo Eleuterio T, de Andrade Corrêa AB, Romanoda Silva LD, Coelho Rodrigues R, Andrade de Oliveira B, et al. Factors associated with death in confirmed cases of COVID-19 in the state of Rio de Janeiro. BMC Infect Dis. 2021;21(687):1–16.
Google Scholar
Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, et al. Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis. 2020;71(16):2079–88.
Article
CAS
Google Scholar
Chen Y, Ouyang L, Bao FS, Li Q, Han L, Zhu B, et al. An interpretable machine learning framework for accurate severe vs non-severe COVID-19 clinical type classification. medRxiv. 2020.
Gong J, Ou J, Qiu X, Jie Y, Chen Y, Yuan L, et al. A tool to early predict severe corona virus disease 2019 (COVID-19): a multicenter study using the risk nomogram in Wuhan and Guangdong, China. Clin Infect Dis. 2020;71(15):833–40.
Article
CAS
Google Scholar
Jiang X, Coffee M, Bari A, Wang J, Jiang X, Huang J, et al. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity. Comput MaterContinua. 2020;63(1):537–51.
Google Scholar
Xie J, Hungerford D, Chen H, Abrams ST, Li S, Wang G, et al. Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19. medRixv. 2020.
Yan L, Zhang T, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2:283–8.
Article
Google Scholar
Rahman T, Al-Ishaq FA, Al-Mohannadi FS, Mubarak RS, Al-Hitmi MH, Islam KR, et al. Mortality prediction utilizing blood biomarkers to predict the severity of COVID-19 using machine learning technique. Diagnostics. 2021;11(9):1582.
Article
CAS
Google Scholar
Kang J, Chen T, Luo H, Luo Y, Du G, Jiming-Yang M. Machine learning predictive model for severe COVID-19. Infect Genet Evol. 2021;90: 104737.
Article
CAS
Google Scholar
De Souza FSH, Hojo-Souza NS, Dos Santos EB, Da Silva CM, Guidoni DL. Predicting the disease outcome in COVID-19 positive patients through machine learning: a retrospective cohort study with Brazilian data. Front Artif Intell. 2021;4:1–13.
Google Scholar
Sardar R, Sharma A, Gupta D. Machine learning assisted prediction of prognostic biomarkers associated with COVID-19, using clinical and proteomics data. Front Genet. 2021;12:1–10.
Article
Google Scholar
Karthikeyan A, Garg A, Vinod PK, Priyakumar UD. Machine learning based clinical decision support system for early COVID-19 mortality prediction. Front Public Health. 2021;9(626697):1–13.
Google Scholar
Collins S, van Smeden M, Riley D. COVID-19 prediction models should adhere to methodological and reporting standards. Eur Respir J. 2020; 56(3): 1-4.
Hooli S, King C. Generalizability of Coronavirus Disease 2019 (COVID-19) clinical prediction models. Clin Infect Dis. 2020;71(15):897.
Article
CAS
Google Scholar
Zhang B, Zhou X, Qiu Y, Song Y, Feng F, Feng J, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE. 2020;15(7):1–13.
Article
CAS
Google Scholar
Weng Z, Chen Q, Li S, Li H, Zhang Q, Lu S, et al. ANDC: an early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J Transl Med. 2020;18(328):1–10.
Google Scholar
Chen R, Liang W, Jiang M, Guan W, Zhan C, Wang T, et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97–105.
Article
CAS
Google Scholar
O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2020;590:140–5.
Article
Google Scholar
COVID-19 Forecasting Team. Variation in the COVID-19 infection–fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis. Lancet. 2022; 399(10334):1469–88.
Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol. 2020;52:93–8.
Article
Google Scholar
Mesta F, Coll AM, Ramírez MÁ, Delgado-Roche L. Predictors of mortality in hospitalized COVID-19 patients: a Mexican population-based cohort study. Biomedicine. 2021;11(2):1–4.
Article
Google Scholar
Ursin RL, Klein SL. Sex differences in respiratory viral pathogenesis and treatments. Annu Rev Virol. 2021;8(1):393–414.
Article
Google Scholar
Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, Vargas-Vázquez A, González-Díaz A, Márquez-Salinas A, et al. Predicting mortality due to SARS-CoV-2: a mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. J Clin Endocrinol Metab. 2020;105(8):2752–61.
Article
Google Scholar
Woolcott OO, Castilla-Bancayán JP. The effect of age on the association between diabetes and mortality in adult patients with COVID-19 in Mexico. Sci Rep. 2021;11(8386):1–10.
Google Scholar
Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–6.
Article
CAS
Google Scholar
Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. Nat Rev Nephrol. 2020;16:705–6.
Article
CAS
Google Scholar
Salinas-Aguirre JE, Sánchez-García C, Rodríguez-Sanchez R, Rodríguez-Munoz L, Díaz-Castano A, Bernal-Gómez R. Características clínicas y comorbilidades asociadas a mortalidad en pacientes con COVID-19 en Coahuila (México). Revista Clinica Espanola. 2021;222(5):288–92.
Article
Google Scholar
Peña EDL, Rascón-Pacheco RA, Ascencio-Montiel IDJ, González-Figueroa E, Fernández-Gárate JE, Medina-Gómez OS, et al. Hypertension, diabetes and obesity, major risk factors for death in patients with COVID-19 in Mexico. Arch Med Res. 2021;52(4):443–9.
Article
Google Scholar
Klonoff DC, Umpierrez GE. Letter to the Editor: COVID-19 in patients with diabetes: risk factors that increase morbidity. Metab, Clin Exp. 2020;108:1–2.
Article
Google Scholar
Aghili SMM, Ebrahimpur M, Arjmand B, Shadman Z, Pejman Sani M, Qorbani M, et al. Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes. 2021;45(5):998–1016.
Article
CAS
Google Scholar
Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195–9.
Article
CAS
Google Scholar
Caussy C, Wallet F, Laville M, Disse E. Obesity is associated with severe forms of COVID-19. Obesity. 2020;28(7):1175.
Article
CAS
Google Scholar
Vera-Zertuche JM, Mancilla-Galindo J, Tlalpa-Prisco M, Aguilar-Alonso P, Aguirre-García MM, Segura-Badilla O, et al. Obesity is a strong risk factor for short-term mortality and adverse outcomes in Mexican patients with COVID-19: a national observational study. Epidemiol Infect. 2021;149(e109):1–11.
Google Scholar
Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: a novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167–73.
Article
CAS
Google Scholar
Caci G, Albini A, Malerba M, Noonan DM, Pochetti P, Polosa R. COVID-19 and obesity: dangerous liaisons. J Clin Med. 2020;9(8):2511.
Article
CAS
Google Scholar
Martínez-Martínez MU, Alpízar-Rodríguez D, Flores-Ramírez R, Portales-Pérez DP, Soria-Guerra R, Pérez-Vázquez F, et al. An analysis COVID-19 in Mexico: a prediction of severity. J Gen Intern Med. 2022;37:624–31.
Article
Google Scholar
Martos-Benítez FD, Soler-Morejón CD, García-del BD. Chronic comorbidities and clinical outcomes in patients with and without COVID-19: a large population-based study using national administrative healthcare open data of Mexico. Intern Emerg Med. 2021;16(6):1507–17.
Article
Google Scholar
Hernández-Galdamez DR, González-Block MÁ, Romo-Dueñas DK, Lima-Morales R, Hernández-Vicente IA, Lumbreras-Guzmán M, et al. Increased risk of hospitalization and death in patients with COVID-19 and pre-existing noncommunicable diseases and modifiable risk factors in Mexico. Arch Med Res. 2020;51(7):683–9.
Article
Google Scholar
Barquera S, Hernández-Barrera L, Trejo-Valdivia B, Shamah T, Campos-Nonato I, Rivera-Dommarco J. Obesity in Mexico, prevalence and trends in adults. Ensanut 2018–19. Salud Pública México. 2020;62(6):682–92.
Article
Google Scholar
Basto-Abreu AC, López-Olmedo N, Rojas-Martínez R, Aguilar-Salinas CA, De la Cruz-Góngora VV, Rivera-Dommarco J, et al. Prevalence of diabetes and glycemic control in Mexico: national results from 2018 and 2020. Salud Publica México. 2021;63(6):725–33.
Article
Google Scholar
Di Castelnuovo A, Bonaccio M, Costanzo S, Gialluisi A, Antinori A, Berselli N, Blandi L, Bruno R, Cauda R, Guaraldi G, My I, Menicanti L, Parruti G, Patti G, Perlini S, Santilli F, Signorelli C, Stefanini GG, Vergori A, Abdeddaim A, Ageno W, Agodi A, Agostoni P, Aiello L, Al Moghazi S, Aucella F, Barbieri G, Bartoloni A, Bologna C, Bonfanti P, Brancati S, Cacciatore F, Caiano L, Cannata F, Carrozzi L, Cascio A, Cingolani A, Cipollone F, Colomba C, Crisetti A, Crosta F, Danzi GB, D’Ardes D, de Gaetano Donati K, Di Gennaro F, Di Palma G, Di Tano G, Fantoni M, Filippini T, Fioretto P, Fusco FM, Gentile I, Grisafi L, Guarnieri G, Landi F, Larizza G, Leone A, Maccagni G, Maccarella S, Mapelli M, Maragna R, Marcucci R, Maresca G, Marotta C, Marra L, Mastroianni F, Mengozzi A, Menichetti F, Milic J, Murri R, Montineri A, Mussinelli R, Mussini C, Musso M, Odone A, Olivieri M, Pasi E, Petri F, Pinchera B, Pivato CA, Pizzi R, Poletti V, Raffaelli F, Ravaglia C, Righetti G, Rognoni A, Rossato M, Rossi M, Sabena A, Salinaro F, Sangiovanni V, Sanrocco C, Scarafino A, Scorzolini L, Sgariglia R, Simeone PG, Spinoni E, Torti C, Trecarichi EM, Vezzani F, Veronesi G, Vettor R, Vianello A, Vinceti M, De Caterina R, Iacoviello L. Common cardiovascular risk factors and in-hospital mortality in 3894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study. Nutr Metab Cardiovasc Dis. 2020;30(11):1899–913. https://doi.org/10.1016/j.numecd.2020.07.031.
Article
CAS
Google Scholar
Spinoni EG, Mennuni M, Rognoni A, Grisafi L, Colombo C, Lio V, Renda G, Foglietta M, Petrilli I, D’Ardes D, Sainaghi PP, Aimaretti G, Bellan M, Castello L, Avanzi A, Corte FD, Krengli M, Pirisi M, Malerba M, Capponi A, Gallina S, Pierdomenico SD, Cipollone F, Patti G, Albano E, Dianzani U, Gaidano G, Gennari A, Gramaglia C, Solli M, Giubertoni A, Veia A, Cisari C, Paolo AT, Valletti PA, Adesi FB, Barini M, Ferrante D, De Vecchi S, Santagostino M, Acquaviva A, Calzaducca E, Casciaro FG, Ceruti F, Cittone MG, Di Benedetto D, Gagliardi I, Giacomini GM, Landi IC, Landi R, Manfredi GF, Pedrinelli AR, Rigamonti C, Rizzi E, Smirne C, Vassia V, Arioli R, Danna P, Falaschi Z, Paschè A, Percivale I, Zagaria D, Beltrame M, Bertoli M, Galbiati A, Gardino CA, Gastaldello ML, Via VG, Giolitti F, Inserra I, Labella E, Nerici I, Gironi LC, Cammarata E, Esposto E, Tarantino V, Zavattaro E, Zottarelli F, Daffara T, Ferrero A, Leone I, Nuzzo A, Baldon G, Battistini S, Chirico E, Lorenzini L, Martelli M, Barbero E, Boffano P, Brucoli M, Garzaro M, Pau A, Bertolin S, Marzari L, Avino G, Saraceno M, Morosini U, Baricich A, Invernizzi M, Gallo S, Montabone C, Padelli SA, Boglione L, Patrucco F, Salamina L, Baorda F, Croce E, Giacone I. Contribution of Atrial Fibrillation to In-Hospital Mortality in Patients With COVID-19. Circ Arrhythm Electrophysiol. 2021;14(2):e009375. https://doi.org/10.1161/CIRCEP.120.009375.
Article
Google Scholar