Miernyk KM, Bulkow LR, Gold BD, Bruce MG, Hurlburt DH, Griffin PM, et al. Prevalence of Helicobacter pylori among Alaskans: Factors associated with infection and comparison of urea breath test and anti-Helicobacter pylori IgG antibodies. Helicobacter. 2018;23(3): e12482.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eshraghian A. Epidemiology of Helicobacter pylori infection among the healthy population in Iran and countries of the Eastern Mediterranean Region: A systematic review of prevalence and risk factors. World J Gastroenterol. 2014;20(46):17618–25.
Article
PubMed
PubMed Central
Google Scholar
Łaszewicz W, Iwańczak F, Iwańczak B, Annabhani A, Bała G, Bąk-Romaniszyn L, et al. Seroprevalence of Helicobacter pylori infection in Polish children and adults depending on socioeconomic status and living conditions. Adv Med Sci. 2014;59(1):147–50.
Article
PubMed
Google Scholar
Mathewos B, Moges B, Dagnew M. Seroprevalence and trend of Helicobacter pylori infection in Gondar University Hospital among dyspeptic patients, Gondar, North West Ethiopia. BMC Res Notes. 2013;6:346.
Article
PubMed
PubMed Central
Google Scholar
Smith S, Jolaiya T, Fowora M, Palamides P, Ngoka F, Bamidele M, et al. Clinical and Socio- Demographic Risk Factors for Acquisition of Helicobacter pylori Infection in Nigeria. Asian Pac J Cancer Prev. 2018;19(7):1851–7.
CAS
PubMed
PubMed Central
Google Scholar
Ueda M, Kikuchi S, Kasugai T, Shunichi T, Miyake C. Helicobacter pylori risk associated with childhood home environment. Cancer Sci. 2003;94(10):914–8.
Article
CAS
PubMed
Google Scholar
Porras C, Nodora J, Sexton R, Ferreccio C, Jimenez S, Dominguez RL, et al. Epidemiology of Helicobacter pylori infection in six Latin American countries (SWOG Trial S0701). Cancer causes & control : CCC. 2013;24(2):209–15.
Article
PubMed
Google Scholar
Klein PD, Opekun AR, Smith EO, Klein PD, Graham DY, Graham DY, et al. Water source as risk factor for Helicobacter pylori infection in Peruvian children. The Lancet. 1991;337(8756):1503–6.
Article
CAS
Google Scholar
Awuku YA, Simpong DL, Alhassan IK, Tuoyire DA, Afaa T, Adu P. Prevalence of helicobacter pylori infection among children living in a rural setting in Sub-Saharan Africa. BMC Public Health. 2017;17:360.
Article
PubMed
PubMed Central
Google Scholar
Ozbey G, Hanafiah A. Epidemiology, diagnosis, and risk factors of helicobacter pylori infection in children. Euroasian J Hepatogastroenterol. 2017;7(1):34–9.
Article
PubMed
PubMed Central
Google Scholar
Dore MP, Malaty HM, Graham DY, Fanciulli G, Delitala G, Realdi G. Risk factors associated with Helicobacter pylori infection among children in a defined geographic area. Clin Infect Dis. 2002;35(3):240–5.
Article
PubMed
Google Scholar
Braga ABC, Fialho AMN, Rodrigues MN, Queiroz DMM, Rocha AMC, Braga LLBC. Helicobacter pylori colonization among children up to 6 years: results of a community-based study from Northeastern Brazil. J Trop Pediatr. 2007;53(6):393–7.
Article
PubMed
Google Scholar
Owyang SY, Luther J, Kao JY. Helicobacter pylori: beneficial for most? Expert Rev Gastroenterol Hepatol. 2011;5(6):649–51.
Article
PubMed
Google Scholar
Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology. 2009;136(6):1863–73.
Article
CAS
PubMed
Google Scholar
Schacher K, Spotts H, Correia C, Walelign S, Tesfaye M, Desta K, et al. Individual and household correlates of Helicobacter pylori infection among Young Ethiopian children in Ziway, Central Ethiopia. BMC Infect Dis. 2020;20(1):310.
Article
PubMed
PubMed Central
Google Scholar
Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35(5–6):352–9.
Article
PubMed
Google Scholar
Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.
Article
PubMed
PubMed Central
Google Scholar
Baxendell K, Walelign S, Tesfaye M, Wordofa M, Abera D, Mesfin A, et al. Association between infection with Helicobacter pylori and platelet indices among school-aged children in central Ethiopia: a cross-sectional study. BMJ Open. 2019;9(4): e027748.
Article
PubMed
PubMed Central
Google Scholar
Mohamed N, Muse A, Wordofa M, Abera D, Mesfin A, Wolde M, et al. Increased Prevalence of Cestode Infection Associated with History of Deworming among Primary School Children in Ethiopia. Am J Trop Med Hyg. 2019;101(3):641–9.
Article
PubMed
PubMed Central
Google Scholar
Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81–106.
Google Scholar
Robnik-Šikonja M, Kononenko I, editors. An adaptation of Relief for attribute estimation in regression. Machine Learning: Proceedings of the Fourteenth International Conference (ICML’97); 1997.
Hall MA. Correlation-based feature selection of discrete and numeric class machine learning. 2000.
Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recogn Lett. 1994;15(11):1119–25.
Article
Google Scholar
Yu L, Liu H, editors. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proceedings of the 20th international conference on machine learning (ICML-03); 2003.
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005;3(02):185–205.
Article
CAS
PubMed
Google Scholar
Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016.
Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
Article
Google Scholar
John GH, Langley P. Estimating continuous distributions in Bayesian classifiers. arXiv preprint arXiv:13024964. 2013.
Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6(1):37–66.
Google Scholar
Vapnik V. The nature of statistical learning theory. Cham: Springer science & business media; 2013.
Google Scholar
Tibshirani R. Regression Shrinkage and Selection via the Lasso. J Roy Stat Soc: Ser B (Methodol). 1996;58(1):267–88.
Google Scholar
Freund Y, Schapire RE, editors. Experiments with a new boosting algorithm. ICML; 1996: Citeseer.
Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
Google Scholar
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.
Article
Google Scholar
Bishop CM. Pattern recognition and machine learning. Cham: Springer; 2006.
Google Scholar
Hastie T, Tibshirani R, Friedman J. Random forests. The elements of statistical learning. Cham: Springer; 2009. p. 587–604.
Book
Google Scholar
van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. JStat Softw. 2011;45(3):1–67.
Google Scholar
Rokach L, Maimon O. Clustering methods. Data mining and knowledge discovery handbook. Cham: Springer; 2005. p. 321–52.
Book
Google Scholar
Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.
Article
PubMed
Google Scholar
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14(1):137.
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Zhang X, Ma R, Wang X, Liu J, Keerman M, et al. Cardiovascular disease prediction by machine learning algorithms based on cytokines in Kazakhs of China. Clin Epidemiol. 2021;13:417–28.
Article
PubMed
PubMed Central
Google Scholar
Mutai CK, McSharry PE, Ngaruye I, Musabanganji E. Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa. BMC Med Res Methodol. 2021;21(1):159. https://doi.org/10.1186/s12874-021-01346-2.
Smith S, Jolaiya T, Fowora M, Palamides P, Ngoka F, Bamidele M, et al. Clinical and socio- demographic risk factors for acquisition of helicobacter pylori infection in Nigeria. APJCP. 2018;19(7):1851–7.
CAS
PubMed
PubMed Central
Google Scholar
Nurgalieva ZZ, Malaty HM, Graham DY, Almuchambetova R, Machmudova A, Kapsultanova D, et al. Helicobacter pylori infection in Kazakhstan: effect of water source and household hygiene. Am J Trop Med Hyg. 2002;67(2):201–6.
Article
PubMed
Google Scholar
Strebel P, Kuhn L, Yach D. Determinants of cigarette smoking in the black township population of Cape Town. J Epidemiol Community Health. 1989;43(3):209–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldman C, Barrado A, Janjetic M, Balcarce N, Cueto Rua E, Oshiro M, et al. Factors associated with H. pylori epidemiology in symptomatic children in Buenos Aires, Argentina. World J Gastroenterol. 2006;12(33):5384–8.
Article
PubMed
PubMed Central
Google Scholar
Graham DY, Malaty HM, Evans DG, Evans DJ Jr, Klein PD, Adam E. Epidemiology of Helicobacter pylori in an asymptomatic population in the United States. Effect of age, race, and socioeconomic status. Gastroenterology. 1991;100(6):1495–501.
Article
CAS
PubMed
Google Scholar
Parikh RB, Manz C, Chivers C, Regli SH, Braun J, Draugelis ME, et al. Machine learning approaches to predict 6-month mortality among patients with cancer. JAMA Netw Open. 2019;2(10): e1915997.
Article
PubMed
PubMed Central
Google Scholar
Liang W, Yao J, Chen A, Lv Q, Zanin M, Liu J, et al. Early triage of critically ill COVID-19 patients using deep learning. Nat Commun. 2020;11(1):3543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu C, Liu Z, Jiang Y, Shi O, Zhang X, Xu K, et al. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. Int J Epidemiol. 2021;49(6):1918–29.
Article
PubMed
Google Scholar
Mohammed SH, Ahmed MM, Al-Mousawi AM, Azeez A. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Int J Mycobacteriol. 2018;7(4):361–7.
Article
PubMed
Google Scholar
Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, et al. Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.
Article
CAS
PubMed
Google Scholar