Kateete DP, Nakanjako R, Namugenyi J, Erume J, Joloba ML, Najjuka CF. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007–2009). SpringerPlus. 2016;5(1):1308.
Manenzhe RIZH, Nicol MP, Kaba M. The spread of carbapenemase producing bacteria in Africa: a systematic review. J Antimicrob Chemother. 2015;70(1):23–40.
Article
CAS
Google Scholar
Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. blaIMP and blaVIM Mediated Carbapenem Resistance in Pseudomonas and Acinetobacter Species in India. J Infect Dev Ctries. 2012;6(11):757–62.
Article
CAS
Google Scholar
Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D ??-Lactamases: Are They All Carbapenemases? Antimicrob Agents Chemother. 2014;58(4):2119–25.
Article
Google Scholar
Poirel L, Pitout JD, Nordmann P. Carbapenemases: Molecular Diversity and Clinical Consequences. Future Microbiol. 2007;2(5):501–12 Future Medicine.
Article
CAS
Google Scholar
Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE, Li RW, Stenger DA, Taitt CR, Vora GJ. Identification of bla (OXA-51-Like), bla (OXA- 58), bla (DIM-1), and bla (VIM) Carbapenemase Genes in Hospital Enterobacteriaceae. J Clin Microbiol. 2013;51(7):2435.
Article
CAS
Google Scholar
Albrich WC, Angstwurm M, Bader L, Gartner R. Drug resistance in intensive care units. Infection. 1999;27(Suppl 2):S19–23.
Article
Google Scholar
Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL. The Role of ISAba1 in Expression of OXA Carbapenemase Genes in Acinetobacter Baumannii. FEMS Microbiol Lett. 2006;258(1):72–7.
Article
CAS
Google Scholar
Okoche D, Asiimwe BB, Katabazi FA, Kato L, Najjuka CF. Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from Mulago National Referral Hospital, Uganda. PLoS One. 2015;10(8):e0135745.
Article
Google Scholar
Christine F, Najjuka DPK, Kajumbula HM, Joloba ML, Essack SY. Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res Notes. 2016;9:235.
Article
Google Scholar
Parajuli NP, Acharya SP, Mishra SK, Parajuli K, Rijal BP, Pokhrel BM. High Burden of Antimicrobial Resistance among Gram Negative Bacteria Causing Healthcare Associated Infections in a Critical Care Unit of Nepal. Antimicrob Resist Infect Control. 2017;6:67 London: BioMed Central.
Article
Google Scholar
Wikler AM. Performance Standards for Antimicrobial Susceptibility Testing Sixteenth Informational Supplement. Clin Lab Stand Inst. 2006;16:M 100–S.
Google Scholar
UK Standards for Microbiology Investigations 2016. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/554654/B_60i2.1.pdf.
Asthana S, Mathur P, Tak V. Detection of carbapenemase production in gram-negative bacteria. J Lab physicians. 2014;6(2):69.
Article
Google Scholar
Pitout JDD, Gregson DB, Poirel L, McClure J-A, Le P, Church DL. Detection of Pseudomonas Aeruginosa Producing Metallo-β-Lactamases in a Large Centralized Laboratory. J Clin Microbiol. 2005;43(7):3129–35.
Article
CAS
Google Scholar
Rastegar Lari A, Azimi L, Rahbar M, Fallah F, Alaghehbandan R. Phenotypic Detection of Klebsiella pneumoniae Carbapenemase among Burns Patients: First Report from Iran. Burns. 2013;391:174–6.
Article
Google Scholar
Moura A, Henriques I, Ribeiro R, Correia A. Prevalence and Characterization of Integrons from Bacteria Isolated from a Slaughterhouse Wastewater Treatment Plant. J Antimicrob Chemother. 2007;60(6):1243–50.
Article
CAS
Google Scholar
Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 Positive Bacteria in the New Delhi Environment and Its Implications for Human Health: An Environmental Point Prevalence Study. Lancet Infect Dis. 2011;11(5):355–62.
Article
Google Scholar
Yan J-J, Wu S-M, Tsai S-H, Wu J-J, Su I-J. Prevalence of SHV-12 among Clinical Isolates Ofklebsiella pneumoniae Producing Extended-Spectrum β-Lactamases and Identification of a Novel AmpC Enzyme (CMY-8) in Southern Taiwan. Antimicrob Agents Chemother. 2000;44(6):1438–42.
Article
CAS
Google Scholar
Evans BA, Hamouda A, Towner KJ, Amyes SGB. OXA-51-like β-lactamases and their association with particular epidemic lineages of Acinetobacter baumannii. Clin Microbiol Infect. 2008;14(3):268–75.
Article
CAS
Google Scholar
Turton JF, Gabriel SN, Valderrey C, Kaufrnann ME, Pitt TL. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of <em>Acinetobacter baumannii</em>. Clin Microbiol Infect. 2007;13(8):807–15.
Article
CAS
Google Scholar
Kajumbula H, Fujita AW, Mbabazi O, Najjuka C, Izale C, Akampurira A, Aisu S, Lamorde M, Walwema R, Bahr NC, et al. Antimicrobial drug resistance in blood culture isolates at a tertiary hospital, Uganda. Emerg Infect Dis. 2018;24(1):174–5.
Article
CAS
Google Scholar
Kateete DP, Nakanjako R, Okee M, Joloba ML, Najjuka CF. Genotypic diversity among multidrug resistant Pseudomonas aeruginosa and Acinetobacter species at Mulago Hospital in Kampala, Uganda. BMC Res Notes. 2017;10(1):284.
Article
Google Scholar
Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F. Carbapenemase Genes among Multidrug Resistant Gram Negative Clinical Isolates from a Tertiary Hospital in Mwanza, Tanzania. BioMed Res Int. 2014;2014:303104.
Article
Google Scholar
Fabrizia Minandri SDA, Antunes LCS, Pourcel C, Principe L, Petrosillo N, Visca P. Evidence of Diversity among Epidemiologically Related Carbapenemase-Producing Acintobacter Baumannii Strains Belonging to International Clonal Lineage II. Am Soc Microbiol. 2011;50(3):590–7.
Google Scholar
Weiyuan Wu YH, Lu J, Lu Y, Wu J, Liu Y. Transition of blaOXA-58-like to blaOXA-23-like in Acinetobacter Baumannii Clinical Isolates in Southern China: An 8-Year Study. PLoS One. 2015;10(9):e0137174.
Article
Google Scholar
Poonsuk K, Tribuddharat C, Chuanchuen R. Class 1 integrons in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from clinical isolates. Southeast Asian J Trop Med Public Health. 2012;43(2):376.
CAS
PubMed
Google Scholar
Anna Michalska-Falkowska PTS, Grześ PWH, Hauschild T, Ojdana EATD. Emergence of Pseudomonas Aeruginosa with Class 1 Integron Carrying blaVIM-2 and blaVIM-4 in the University Clinical Hospital of Bialystok (Northeastern Poland). Postepy Hig Med Dosw. 2017;71:589–94.
Google Scholar
Khosravi AD, Mihani F. Detection of Metallo-β-lactamasse producing Pseudomonas Aeruginosan Strains Isolated from Burn Patients in Ahwaz, Iran. Diagn Microbiol Infect Dis. 2018;60(1):125–8 Elsevier.
Article
Google Scholar
Michalopoulos AS, Tsiodras S, Rellos K, Mentzelopoulos S, Falagas ME. Colistin treatment in patients with icu-acquired infections caused by multiresistant gram-negative bacteria: the renaissance of an old antibiotic. Clin Microbiol Infect. 2005;11:115–21.
Article
CAS
Google Scholar
Falagas ME, Kasiakou SK, Saravolatz LD. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–41.
Article
CAS
Google Scholar
Baquero F, Alvarez-Ortega C, Martinez JL. Ecology and evolution of antibiotic resistance. Environ Microbiol Rep. 2009;1(6):469–76 Wiley Online Library.
Article
CAS
Google Scholar
Davies JDD. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–33.
Article
CAS
Google Scholar
Chevereau G, Dravecká M, Batur T, Guvenek A, Ayhan DH, Toprak E, Bollenbach T. Quantifying the determinants of evolutionary dynamics leading to drug resistance. PLoS Biology. 2015;13(11):e1002299 Public Library of Science.
Article
Google Scholar
Bollenbach T. Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr Opin Microbiol. 2015;27:1–9.
Article
CAS
Google Scholar
Toleman MA, JJB B, Nizam SA. Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Encoding Bacteria in the Environment, Dhaka, Bangladesh, 2012. Emerg Infect Dis. 2015;21(6):1027–30.
Article
CAS
Google Scholar
Sidra Shan SS, Ahmad K. Detection of blaIMP Gene in Metallo-β-Lactamase Producing Isolates of Imipenem Resistant Pseudomonas Aeruginosa; an Alarming Threat. J Microbiol Res. 2015;5(6):175–80.
Google Scholar
Xu Z, Li L, Shirtliff ME, Alam MJ, Yamasaki S, Shi L. Occurrence and Characteristics of Class 1 and 2 Integrons in Pseudomonas Aeruginosa Isolates from Patients in Southern China. J Clin Microbiol. 2009;47(1):230–4.
Article
CAS
Google Scholar
Naas T, Mikami Y, Imai T, Poirel L, Nordmann P. Characterization of In53, a Class 1 Plasmid- and Composite Transposon-Located Integron of Escherichia coli Which Carries an Unusual Array of Gene Cassettes. J Bacteriol. 2001;183(1):235–49.
Article
CAS
Google Scholar
Poonsuk K, Tribuddharat C, Chuanchuen R. Class 1 Integrons In Pseudomonas Aeruginosa And Acinetobacter Baumannii Isolated From Clinical Isolates. Southeast Asian J Trop Med Public Health Bangkok. 2012;43(Iss. 2):376–84.
CAS
Google Scholar