UNAIDS: 2014 Progress report on the global plan towards the elimination of new HIV infections among children by 2015 and keeping their mothers alive. 2014. Available from https://www.unaids.org/en/resources/documents/2014/JC2681_2014-Global-Plan-progress. Accessed 2 May 2018.
National Department of Health: The South African Antiretroviral Treatment Guidelines. In. Edited by National Department of Health. Pretoria: National Department of Health, 2010. Available from http://apps.who.int/medicinedocs/documents/s19153en/s19153en.pdf. Accessed 2 May 2018.
Violari A, Lindsey JC, Hughes MD, Mujuru HA, Barlow-Mosha L, Kamthunzi P, Chi BH, Cotton MF, Moultrie H, Khadse S, et al. Nevirapine versus ritonavir-boosted lopinavir for HIV-infected children. N Engl J Med. 2012;366(25):2380–9.
Article
CAS
Google Scholar
South African National AIDS Council: The National Strategic Plan on HIV, STIs and TB, 2012-2016. 2011. Available from https://www.hst.org.za/publications/NonHST%20Publications/hiv-nsp.pdf. Accessed 2 May 2018.
Goga A, Dinh T, Jackson D, for the SAPMTCTE study group: evaluation of the effectiveness of the national prevention of mother-to-child transmission (PMTCT) programme measured at six weeks postpartum in South Africa, 2010. Published 2012. Available from http://www.mrc.ac.za/sites/default/files/files/2016-07-12/SAPMTCTE2010.pdf. Accessed 2 May 2018.
Goga A, Jackson D, Lombard C, Singh M, for the SAPMTCTE study group: Early (4–8 weeks post-delivery) Population-level Effectiveness of WHO PMTCT Option A, South Africa, 2012–13. 2015. 2015. Available from http://www.mrc.ac.za/sites/default/files/files/2016-07-12/SAPMTCTEReport2012.pdf.. Accessed 2 May 2018.
Goga A, Dinh T, Jackson D, Lombard C, Delaney K, Puren A, Sherman G, Woldesenbet S, Ramokolo V, Crowley S, et al. First population-level effectiveness evaluation of a national programme to prevent HIV transmission from mother to child, South Africa. J Epidemiol Community Health. 2015;69:240–8.
Article
Google Scholar
Goga A, Dinh T, Jackson D, Lombard C, Puren A, Sherman G, Ramokolo V, Woldesenbet S, Doherty T, Noveve N, et al. Population-level effectiveness of maternal antiretroviral treatment initiation before or during the first trimester and infant antiretroviral prophylaxis on early mother-to-child transmission of HIV, South Africa: implications for eliminating MTCT. J Glob Health. 2016; http://www.jogh.org/documents/issue201602/jogh-06-020405.pdf.
Ton Q, Frenkel L. HIV drug resistance in mothers and infants following use of antiretrovirals to prevent mother-to-child transmission. Curr HIV Res. 2013;11(2):126–36.
Article
CAS
Google Scholar
Paredes R, Marconi VC, Lockman S, Abrams EJ, Kuhn L. Impact of antiretroviral drugs in pregnant women and their children in Africa: HIV resistance and treatment outcomes. J Infect Dis. 2013;207(Suppl 2):S93–100.
Article
CAS
Google Scholar
Arrive E, Newell ML, Ekouevi DK, Chaix ML, Thiebaut R, Masquelier B, Leroy V, Perre PV, Rouzioux C, Dabis F. Prevalence of resistance to nevirapine in mothers and children after single-dose exposure to prevent vertical transmission of HIV-1: a meta-analysis. Int J Epidemiol. 2007;36(5):1009–21.
Article
Google Scholar
Hunt GM, Coovadia A, Abrams EJ, Sherman G, Meyers T, Morris L, Kuhn L. HIV-1 drug resistance at antiretroviral treatment initiation in children previously exposed to single-dose nevirapine. Aids. 2011;25(12):1461–9.
Article
CAS
Google Scholar
Goga A, Dinh TH, Jackson DJ, Lombard C, Puren A, Sherman G, Ramokolo V, Woldesenbet S, Doherty T, Noveve N, et al. Population-level effectiveness of maternal antiretroviral treatment initiation before or during the first trimester and infant antiretroviral prophylaxis on early mother-to-child transmission of HIV, South Africa: implications for eliminating MTCT. J Glob Health. 2016; in press.
Zhou Z, Wagar N, DeVos JR, Rottinghaus E, Diallo K, Nguyen DB, Bassey O, Ugbena R, Wadonda-Kabondo N, McConnell MS, et al. Optimization of a low cost and broadly sensitive genotyping assay for HIV-1 drug resistance surveillance and monitoring in resource-limited settings. PLoS One. 2011;6(11):e28184.
Article
CAS
Google Scholar
Salimo AT, Ledwaba J, Coovadia A, Abrams EJ, Technau KG, Kuhn L, Morris L, Hunt GM. The use of dried blood spot specimens for HIV-1 drug resistance genotyping in young children initiating antiretroviral therapy. J Virol Methods. 2015;223:30–2.
Article
CAS
Google Scholar
Woods CK, Brumme CJ, Liu TF, Chui CK, Chu AL, Wynhoven B, Hall TA, Trevino C, Shafer RW, Harrigan PR. Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J Clin Microbiol. 2012;50(6):1936–42.
Article
CAS
Google Scholar
Wensing AM, Calvez V, Gunthard HF, Johnson VA, Paredes R, Pillay D, Shafer RW, Richman DD. 2015 update of the drug resistance mutations in HIV-1. Top Antivir Med. 2015;23(4):132–41.
PubMed
Google Scholar
Kuhn L, Hunt G, Technau KG, Coovadia A, Ledwaba J, Pickerill S, Penazzato M, Bertagnolio S, Mellins CA, Black V, et al. Drug resistance among newly diagnosed HIV-infected children in the era of more efficacious antiretroviral prophylaxis. AIDS. 2014;28(11):1673–8.
Article
CAS
Google Scholar
Penazzato M. HIV drug resistance surveillance in children less than 18 months old newly diagnosed with HIV: results from Swaziland and Zimbabwe. In: World Health Organization, editor. 5th international workshop on HIV pediatrics. Malaysia: Kuala Lumpur; 2013.
Google Scholar
Sebunya R, Musiime V, Kitaka SB, Ndeezi G. Incidence and risk factors for first line anti retroviral treatment failure among Ugandan children attending an urban HIV clinic. AIDS Res Ther. 2013;10(1):25.
Article
Google Scholar
Boerma RS, Boender TS, Sigaloff KC, Rinke de Wit TF, van Hensbroek MB, Ndembi N, Adeyemo T, Temiye EO, Osibogun A, Ondoa P, et al. High levels of pre-treatment HIV drug resistance and treatment failure in Nigerian children. J Int AIDS Soc. 2016;19(1):21140.
Article
Google Scholar
Boerma RS, Sigaloff KC, Akanmu AS, Inzaule S, Boele van Hensbroek M, Rinke de Wit TF, Calis JC. Alarming increase in pretreatment HIV drug resistance in children living in sub-Saharan Africa: a systematic review and meta-analysis. J Antimicrob Chemother. 2017;72(2):365–71.
Article
CAS
Google Scholar