Skip to main content

Cytomegalovirus induced refractory TTP in an immunocompetent individual: a case report



Thrombotic thrombocytopenic purpura (TTP) is a rare, potentially fatal disease with multisystem involvement. Cytomegalovirus (CMV) infection as a cause of refractory TTP, has been reported only in immunocompromised individuals. We report a case of CMV-induced refractory TTP in an immunocompetent individual.

Case presentation

A 35-year-old, previously healthy Sri Lankan man, presented with fever for 3 days with gum bleeding and progressive drowsiness. His Glasgow coma scale score was 10/15. He did not have papilloedema or neck stiffness. Laboratory evaluation showed a severe thrombocytopenia with microangiopathic haemolytic anaemia. There was marginal renal impairment and normal coagulation profile. Non-contrast CT scan of brain was normal. A diagnosis of thrombotic thrombocytopenic purpura was made. Despite daily plasma exchanges and high-dose steroids, he failed to achieve the expected therapeutic response, thus demonstrating refractory TTP. On exploring for possible causes of refractoriness to treatment, a clinically significant PCR titre of CMV was detected. Treatment of CMV infection lead to complete recovery of TTP. His disease course was further complicated with spontaneous spinal haemorrhage leading to neurological sequelae.

Discussion and conclusions

This is the first report of CMV induced refractory TTP in an immunocompetent adult. It is also the first report of clinically significant spontaneous spinal haematoma in TTP. These two rare occurrences should be considered when patients with refractory TTP do not improve as expected.

Peer Review reports


Thrombotic thrombocytopenic purpura (TTP) first described by Dr. E Moschcowitz in 1924, is a rare, potentially fatal disease with multisystem involvement. TTP is characterized by a pentad of features including thrombocytopenia, microangiopathic haemolytic anaemia, neurological abnormalities, renal failure and fever [1]. Plasma exchange and immunosuppression have been found to be effective treatment in patients with TTP. In a retrospective analysis of 11-year experience on TTP, 93% were reported to have excellent response to early initiation of plasma exchange while 86% reached complete remission [2]. Similarly, 55% of patients achieved remission with corticosteroids alone, in a study conducted prior to systematic use of plasma exchange in TTP [3]. However, a proportion of patients with TTP remain refractory to treatment and are often found to have an underlying secondary aetiology that drives the TTP. Reported secondary causes of refractory TTP include CMV and other viral infections, ventilator-associated or urinary tract-associated gram-negative sepsis, central line-associated staphylococcal bacteraemia, and occult malignancies [4]. However, CMV induced refractory TTP has been previously reported only in immunocompromised individuals. Herein we report a case of CMV induced refractory TTP in an immunocompetent individual.

Case presentation

A previously healthy 35-year-old Sri Lankan man presented with high-grade intermittent fever for 3 days with constitutional symptoms. He had spontaneous gum bleeding with no other overt bleeding manifestations. He had associated intermittent frontal headache of moderate severity at presentation and subsequently developed gradually worsening drowsiness. Rest of the history including his past medical and family histories were unremarkable. In particular, he did not have diabetes mellitus, history of recurrent infections, unprotected sexual contact or recreational drug abuse.

On examination, his body temperature was 100 °F and his Glasgow coma scale score was 10/15. He was mildly pale. There was no neck stiffness. Fundoscopic examination was normal. There were no focal neurological signs. His pulse rate was 100 bpm and blood pressure was 130/80 mmHg, Rest of the cardiovascular, respiratory and abdominal examinations were normal.

His full blood count showed a white cell count of 9.2 × 103/dl (Normal Range (NR) 4–11 × 103) with neutrophil predominance (77%). Haemoglobin was 6.9 g/dl (NR 11–15) and platelet count on admission was 7 × 103 (NR150–400 × 103). His coagulation profile was normal with prothrombin time of 12.8 s (NR 10–13) and APTT 30 s (NR 26–40). Serum creatinine was slightly elevated at 137 mmol/l (NR 60–120 umol/L) and the electrolytes were normal. There was indirect hyperbilirubinaemia with total bilirubin of 44.7 μmol/l (NR 1.7–20.5) and direct bilirubin of 7.3 μmol/l (NR 1.7–5.1). The serum lactate dehydrogenase level was 3115 U/l (NR 160–450). Direct coombs test and dengue serology were negative. Non-contrast CT scan of the brain was normal. Blood picture showed evidence of severe thrombocytopenia with microangiopathic haemolytic anaemia (MAHA).

A diagnosis of TTP was made and he was promptly commenced on therapeutic plasma exchange and 1 mg/kg of oral prednisolone. However, he developed two episodes of generalized tonic-clonic convulsions which progressed in to a non-convulsive status epilepticus on the fifth day of illness, which required elective ventilation in the intensive care unit. On day 18, he developed flaccid paraparesis with sphincter dysfunction. Magnetic resonance imaging showed haemorrhage at multiple spinal levels including cervical spine sub-arachnoid space, anterior epidural space and intra-thecal space from T10 to L3 vertebral levels, and in the the region of the conus medullaris.

Surgical drainage of the spinal haematoma was considered hazardous. At this point his platelet count was 85 × 103 and remained < 100 × 103 with  MAHA persisting despite 16 plasma exchanges and high dose steroids.

Initially, the refractoriness of the TTP was attributed to ventilator associated pneumonia. However, since successful treatment of sepsis did not improve the MAHA, an alternative aetiology was investigated. Polymerase chain reaction of serum revealed 2100 IU/ml copies of CMV (Reference laboratory cutoff value more than 640 IU/ml was considered clinically significant). CMV DNA was quantitatively determined by RealStar® CMV PCR Kit 1.0 (Altona diagnostics). Screening tests for autoimmune diseases, other chronic infections and immunodeficiency, which included ANA, serum complement levels, serum immunoglobulin levels, HIV 1, HIV 2, VDRL, hepatitis screen and HbA1c were negative.

The patient was commenced on oral valganciclovir 450 mg/daily and continued for 21 days. After about 6 days of valganciclovir treatment his platelet count increased to 198 × 103/cumm and the MAHA resolved. After resolution of the TTP, the patient was transferred to a rehabilitation facility for further care. At three months’ review, he had normal haematological and biochemical parameters and a negative PCR quantification of CMV. He had regained ability to walk with support and had normal sphincter function.


This is the first report of CMV induced refractory TTP in an immunocompetent individual. All previous reports of CMV induced TTP had been in immunocompromised hosts [5,6,7]. Our case report also highlights the occurrence of spinal neurological deficits as a complication of haemorrhage related to TTP.

Refractory TTP in our patient was diagnosed when immunosuppression and plasma exchange failed to produce a doubling of platelet count after 4 days [8]. When a patient fails to respond to standard treatment, it is essential to look for an underlying secondary aetiology that drives the TTP. The usual causes include systemic infection, malignancy and treatment related complications [9]. When our patient did not have the expected rise in platelet count despite successful treatment of sepsis, further investigations for occult infections, autoimmune diseases and malignancies led to the discovery of a significant titre of CMV in the blood. Resolution of TTP with treatment of CMV proved that it was indeed the cause of the refractory TTP. However, extensive evaluation did not reveal evidence of any immunodeficiency.

Symptomatic CMV infection in immunocompetent adults is rare. Malaise, fever, lymphadenopathy, glandular fever–like illness were the commonly reported clinical features in immunocompetent patients with CMV [10, 11]. Most have presented with acute hepatitis [12, 13]. Rarely some have presented with neurological and intestinal manifestations including encephalitis, transverse myelitis, oesophagitis, colitis and multiple gastro-intestinal tract ulcers [14,15,16]. In contrast, CMV infection was commonly reported among immunocompromised patients including transplant recipients and those with acquired immunodeficiency syndrome. Patients deficient in cell-mediated immunity are at higher risk as the CMV specific CD4+ and CD8+ cell functions are impaired. These cells play a pivotal role in protection after primary infection and preventing reactivation of latent disease [17]. TTP was among recognized clinical manifestations of CMV infection in immunocompromised adults. [5,6,7]. The postulated mechanisms for CMV induced TTP include direct and cytokine-mediated endothelial damage which result in increased expression of endothelial adhesion molecules and release of Von-Willebrand factor [18].

The course of illness in our patient was further complicated with spontaneous spinal epidural and intrathecal haematoma, which resulted in flaccid paraparesis. Neurological complications in TTP are most commonly explained by micro-thrombi resulting brief episodes of focal ischaemia [19]. The reported MRI findings in TTP include cerebral cortical infarcts and haemorrhagic infarcts [20, 21]. Clinically important central nervous system bleeding has been reported in TTP [22], but is exceptionally rare despite low platelet counts and has grave prognosis. Ours is the first report of clinically significant spontaneous spinal haematoma in TTP.


CMV infection is a rare but treatable cause of refractory TTP, most commonly occurring in immunocompromised individuals, but as highlighted in our report, also occurring rarely in immunocompetent adults. Awareness and early identification of CMV is essential in the successful treatment of refractory TTP and to avoid unnecessary prolongation of illness with inherent hazard to life. This case report also highlights the need for vigilance to detect haemorrhage as a potential cause for neurological sequelae in addition to thrombotic microangiopathic complications in TTP.



Anti-nuclear antibody


Activated partial thromboplastin time


Cluster of differentiation




Human immunodeficiency virus


Intensive care unit


Microangiopathic haemolytic anaemia


Magnetic resonance imaging


Polymerase chain reaction


Thrombotic thrombocytopenic purpura


Venereal Disease Research Laboratory


  1. Hovinga JAK. Thrombotic thrombocytopenic purpura: diagnostic criteria. Clinical features, and long term outcomes from 1995 through 2015. Blood adv. 2017(1):590.

  2. Pernat MA, Buturovic-Ponikvar J, Kovac J, et al. Membrane plasma exchange for the treatment of thrombotic thrombocytopenic purpura. Ther Apher Dial. 2009;13(4):318–21.

    Article  CAS  Google Scholar 

  3. Bell WR, Braine HG, Ness PM, Kickler TS. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325(6):398–403.

    Article  CAS  Google Scholar 

  4. Cserti C, Landaw S, Uhl L. Do infections provoke exacerbations and relapses of thrombotic thrombocytopenic purpura? Clin Apher. 2007;22:21.

    Article  Google Scholar 

  5. Esteve V, Reynaga E, Et A. Cytomegalovirus infection-associated thrombotic microangiopathy as the first clinical manifestation of HIV primary infection. Nefrologia. 2006;26:639–41.

    CAS  PubMed  Google Scholar 

  6. Ramasubbu K. Mullick thrombotic microangiopathy and cytomegalovirus in liver transplant recipients: a case-based review. Transpl Infect Dis. 2003;5:98–103.

    Article  CAS  Google Scholar 

  7. Jeejeebhoy FM, Zaltzman JS. Thrombotic microangiopathy in association with cytomegalovirus infection in a renal transplant patient: a new treatment strategy. Transplantation. 1998;65:1645–8.

    Article  CAS  Google Scholar 

  8. Froissart A, Buffet M, Veyradier A, et al. Efficacy and safety of first line rituximab in severe acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French thrombotic microangiopathies reference Centre. Crit Care Med. 2012;40:104.

    Article  CAS  Google Scholar 

  9. Creager AJ, Brecher ME, Bandarenko N. Thrombotic thrombocytopenic purpura that is refractory to therapeutic plasma exchange in two patients with occult infection. Transfusion. 1998;38:419.

    Article  CAS  Google Scholar 

  10. Kano Y, Shiohara T. Current understanding of cytomegalovirus infection in immunocompetent individuals. J Dermatol Sci. 2000;22(pg):196–204.

    Article  CAS  Google Scholar 

  11. Eddleston M, Peacock S, Juniper M, Warrell DA. Severe cytomegalovirus infection in immunocompetent patients, Clin Infect Dis, 1997, vol. 24 (pg. 52-56).

    Article  CAS  Google Scholar 

  12. Maneerat Y, Wilairatana P, Pongpouratu E, et al. Herpes simplex virus type. 2, cytomegalovirus and Epstein-Barr virus infection in acute non. A to E hepatitis in Thai patients, Asian Pac J Allergy Immunol, 1997, vol. 15 (pg. 147–151).

  13. Kunno A, Abe M, Yamada M, Murakami K. Clinical and histologic features of cytomegalovirus hepatitis in previously healthy adults, Liver, 1997, vol. 17 (pg. 129–132).

  14. Studahl M, Ricksten A, Sandberg T, Bergstrom T, Elowson S. Cytomegalovirus encephalitis in four immunocompetent patients, Lancet, 1992, vol. 340 (pg. 1045-1046).

    Article  CAS  Google Scholar 

  15. Patra S, Samal SC, Chacko A, Mathan VI, Mathan MM. Cytomegalovirus infection of the human gastrointestinal tract, J Gastroenterol Hepatol , 1999, vol. 14 (pg. 973-976).

    Article  CAS  Google Scholar 

  16. Ng FH, Chau TN, Cheung TC, et al. Cytomegalovirus colitis in individuals without apparent cause of immunodeficiency. Dig Dis Sci. 1999;44(pg):945–52.

    Article  CAS  Google Scholar 

  17. Walter EA, Greenberg PD, Gilbert MJ. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.

    Article  CAS  Google Scholar 

  18. Silva RLD. Viral-associated thrombotic microangiopathies. Hematol Oncol Stem Cell Ther. 2011;4(2):51–9.

    Article  Google Scholar 

  19. Kwaan HC. Clinicopathologic features of thrombotic thrombocytopenicpurpura. Semin Hematol. l987;2:71–81.

  20. Gruber O, Wittig L, et al. Thrombotic thrombocytopenic purpura: MRI demonstration of persistent small cerebral infarcts after clinical recovery. Neuroradiology. 2000;42(8):616–8.

    Article  CAS  Google Scholar 

  21. Alungal J, Abdulla MC, et al. Multiple hemorrhagic infarcts in thrombotic thrombocytopenic purpura. Neuroimage: 2014 Vol : 62 (5) (Pg.582-583).

    Article  Google Scholar 

  22. Bakshi R, Shaikh ZA, Bates VE, Kinkel PR. Thrombotic thrombocytopenic purpura: brain CT and MRI findings in 12 patients. Neurology. 1999;52(6):1285.

    Article  CAS  Google Scholar 

Download references


We thank medical research Institute, Colombo, Sri Lanka, for timely arrangement of serological investigations.


Not applicable.

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations



TC, MB, PW and AS were involved in the management of the patient and contributed to the drafting of the manuscript. TC revised the manuscript critically and prepared the final version. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Praveen Weeratunga or Thashi Chang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent for publication of their clinical details was obtained from the patient. A copy of the consent form is available for review by the Editor of this journal.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boteju, M., Weeratunga, P., Sivashangar, A. et al. Cytomegalovirus induced refractory TTP in an immunocompetent individual: a case report. BMC Infect Dis 19, 394 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: