CIDRAP (Center for Infectious Disease Research and Policy). Commentary: Protecting health workers from airborne MERS-CoV—learning from SARS https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html. Accessed 9 August 2017.
Kim SH, Chang SY, Sung M, et al. Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards. Clin Infect Dis. 2016;63:363–9.
Article
Google Scholar
CIDRAP (Center for Infectious Disease Research and Policy). Commentary: Health workers need optimal respiratory protection for Ebola https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance.html. Accessed 9 August 2017.
Osterholm MT, Moore KA, Kelley NS, Brosseau LM, Wong G, Murphy FA, et al. Transmission of Ebola viruses: what we know and what we do not know. MBio. 2015;6:e00137.
PubMed
PubMed Central
Google Scholar
Cole EC, Cook CE. Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies. Am J Infect Control. 1998;26:453–64.
Article
CAS
Google Scholar
Hinds WC. Aerosol technology. 2nd ed. New York: John Wiley & Sons; 1999.
Google Scholar
Infectious Diseases Society of America (ISDA). Preventing Transmission of Pandemic Influenza and Other Viral Respiratory Diseases: Personal Protective Equipment for Healthcare Personnel: Update 2010. Chapter: 2 Understanding the Risk to Healthcare Personnel. 2010. https://www.nap.edu/read/13027/chapter/4#30
Yan J, Grantham M, Pantelic J, Bueno de Mesqita PJ, Albert B, Liu F, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci U S A. 2018;115:1081–86.
Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, et al. Airborne transmission of influenza a/H5N1 virus between ferrets. Science. 2012;336:1534–41.
Article
CAS
Google Scholar
Centers for Disease Control and prevention (CDC). Approaches to Better Understand Human Influenza Transmission. 2010. https://www.cdc.gov/influenzatransmissionworkshop2010/
Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. An outbreak of influenza aboard a commercial airliner. Am J Epidemiol. 1979;110:1–6.
Article
CAS
Google Scholar
Tang JW, Li Y, Eames I, Chan PK, Ridgway GL. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J Hosp Infect. 2006;64:100–14.
Article
CAS
Google Scholar
Xie X, Li Y, Chwang AT, Ho PL, Seto WH. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve. Indoor Air. 2007;17:211–25.
Article
CAS
Google Scholar
Li Y, Leung GM, Tang JW, Yang X, Chao CY, Lin JZ, et al. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air. 2007;17:2–18.
Article
CAS
Google Scholar
Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med. 2015;57:501–8.
Liu L, Li Y, Nielsen PV, Wei J, Jensen RL. Short-range airborne transmission of expiratory droplets between two people. Indoor Air. 2017;27:452–62.
Article
CAS
Google Scholar
Aliabadi AA, Rogak SN, Bartlett KH, Green SI. Preventing airborne disease transmission: review of methods for ventilation Design in Health Care Facilities. Adv Prev Med. 2011;2011:124064.
Article
Google Scholar
Jewett DL, Heinsohn P, Bennett C, Rosen A, Neuilly C. Blood-containing aerosols generated by surgical techniques: a possible infectious hazard. Am Ind Hyg Assoc J. 1992;53:228–31.
Article
CAS
Google Scholar
Harrel SK, Molinari J. Aerosols and splatter in dentistry: a brief review of the literature and infection control implications. J Am Dent Assoc. 2004;135:429–37.
Article
Google Scholar
Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016;44(9 Suppl):S102–8.
Article
Google Scholar
Roy CJ, Milton DK. Airborne transmission of communicable infection--the elusive pathway. N Engl J Med. 2004;350:1710–2.
Article
CAS
Google Scholar
Asano Y, Iwayama S, Miyata T, Yazaki T, Ozaki T, Tsuzuki K, et al. Spread of varicella in hospitalized children having no direct contact with an indicator zoster case and its prevention by a live vaccine. Biken J. 1980;23:157–61.
CAS
PubMed
Google Scholar
Gustafson TL, Lavely GB, Brawner ER Jr, Hutcheson RH Jr, Wright PF, Schaffner W. An outbreak of airborne nosocomial varicella. Pediatrics. 1982;70:550–6.
CAS
PubMed
Google Scholar
Suzuki K, Yoshikawa T, Ihira M, Ohashi M, Suga S, Asano Y. Spread of varicella-zoster virus DNA to the environment from varicella patients who were treated with oral acyclovir. Pediatr Int. 2003;45:458–60.
Article
Google Scholar
Tang JW, Eames I, Li Y, Taha YA, Wilson P, Bellingan G, et al. Door-opening motion can potentially lead to a transient breakdown in negative-pressure isolation conditions: the importance of vorticity and buoyancy airflows. J Hosp Infect. 2005;61:283–6.
Article
CAS
Google Scholar
Wells WF, Wells WM, Wilder TS. The environmental control of epidemic contagion. I. An epidemiologic study of radiant disinfection of air in day schools Am J Hyg. 1942;35:97–121.
Google Scholar
Riley EC, Murphy G, Riley RL. Airborne spread of measles in a suburban elementary school. Am J Epidemiol. 1978;107:421–32.
Article
CAS
Google Scholar
Bloch AB, Orenstein WA, Ewing WM, Spain WH, Mallison GF, Herrmann KL, et al. Measles outbreak in a pediatric practice: airborne transmission in an office setting. Pediatrics. 1985;75:676–83.
CAS
PubMed
Google Scholar
Remington PL, Hall WN, Davis IH, Herald A, Gunn RA. Airborne transmission of measles in a physician's office. JAMA. 1985;253:1574–7.
Article
CAS
Google Scholar
Riley RL, Mills CC, Nyka W, Weinstock N, Story PB, Sultan LU, Riley MC, Wells WF. Aerial Dissemination of pulmonary tuberculosis a two year study of contagion in a tuberculosis ward. Am J Hyg. 1959;70:185–96.
Google Scholar
Riley RL, Mills CC, O'Grady F, Sultan LU, Wittstadt F, Shivpuri DN. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis. 1962;85:511–25.
CAS
PubMed
Google Scholar
Escombe AR, Moore DA, Gilman RH, Pan W, Navincopa M, Ticona E, et al. The infectiousness of tuberculosis patients coinfected with HIV. PLoS Med. 2008;5:e188.
Article
Google Scholar
Houk VN. Spread of tuberculosis via recirculated air in a naval vessel: the Byrd study. Ann N Y Acad Sci. 1980;353:10–24.
Article
CAS
Google Scholar
Hutton MD, Stead WW, Cauthen GM, Bloch AB, Ewing WM. Nosocomial transmission of tuberculosis associated with a draining abscess. J Infect Dis. 1990;161:286–95.
Article
CAS
Google Scholar
Kenyon TA, Valway SE, Ihle WW, Onorato IM, Castro KG. Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight. N Engl J Med. 1996;334:933–8.
Article
CAS
Google Scholar
Escombe AR, Moore DA, Gilman RH, Navincopa M, Ticona E, Mitchell B, et al. Upper-room ultraviolet light and negative air ionization to prevent tuberculosis transmission. PLoS Med. 2009;6:e43.
Article
Google Scholar
Milton DK. What was the primary mode of smallpox transmission? Implications for biodefense Front Cell Infect Microbiol. 2012;2:150.
PubMed
Google Scholar
Wehrle PF, Posch J, Richter KH, Henderson DA. An airborne outbreak of smallpox in a German hospital and its significance with respect to other recent outbreaks in Europe. Bull World Health Organ. 1970;43:669–79.
CAS
PubMed
PubMed Central
Google Scholar
Wong TW1, Lee CK, Tam W, Lau JT, Yu TS, Lui SF, et al. Cluster of SARS among medical students exposed to single patient, Hong Kong. Emerg Infect Dis. 2004;10:269–276.
Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, et al. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003;349:2416–22.
Article
CAS
Google Scholar
Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350:1731–9.
Article
CAS
Google Scholar
Booth TF1, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, et al. Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J Infect Dis. 2005;191:1472–1477.
Assiri A1, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13:752–761.
Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med. 2014;20:233–41.
Article
Google Scholar
Al-Tawfiq JA, Zumla A, Memish ZA. Coronaviruses: severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus in travelers. Curr Opin Infect Dis. 2014;27:411–7.
Article
Google Scholar
Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lemaire X, et al. Clinical features and viral diagnosis of two cases of infection with Middle East respiratory syndrome coronavirus: a report of nosocomial transmission. Lancet. 2013;381:2265–72.
Article
Google Scholar
Mailles A, Blanckaert K, Chaud P, van der Werf S, Lina B, Caro V, et al. First cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Euro Surveill. 13;18(24).
Chowell G, Abdirizak F, Lee S, Lee J, Jung E, Nishiura H, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 2015;13:210.
Article
Google Scholar
Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis. 2013;17:e668–72.
Article
Google Scholar
Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–72.
Article
CAS
Google Scholar
Poissy J, Goffard A, Parmentier-Decrucq E, Favory R, Kauv M, Kipnis E, et al. Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol. 2014;61:275–8.
Article
CAS
Google Scholar
Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, et al. Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J Infect Dis. 2014;210:1590–4.
Article
CAS
Google Scholar
Widagdo W, Raj VS, Schipper D, Kolijn K, van Leenders GJ, Bosch BJ, et al. Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels. J Virol. 2016;90:4838–42.
Article
CAS
Google Scholar
Tellier R. Review of aerosol transmission of influenza a virus. Emerg Infect Dis. 2006;12:1657–62.
Article
Google Scholar
Tellier R. Aerosol transmission of influenza a virus: a review of new studies. J R Soc Interface. 2009;6(Suppl 6):S783–90.
PubMed
PubMed Central
Google Scholar
Cowling BJ. Airborne transmission of influenza: implications for control in healthcare and community settings. Clin Infect Dis. 2012;54:1578–80.
Article
Google Scholar
Cowling BJ, Ip DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Aerosol transmission is an important mode of influenza a virus spread. Nat Commun. 2013;4:1935.
Article
Google Scholar
Alford RH, Kasel JA, Gerone PJ, Knight V. Human influenza resulting from aerosol inhalation. Proc Soc Exp Biol Med. 1966;122:800–4.
Article
CAS
Google Scholar
Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface. 2009;6(Suppl 6):S737–46.
PubMed
PubMed Central
Google Scholar
US Centers for Disease Control and Prevention (CDC). Interim Guidance for the Use of Masks to Control Influenza Transmission. https://www.cdc.gov/flu/professionals/infectioncontrol/maskguidance.htm. Accessed 9 August 2017.
O’Neil CA,Li J,Leavey A,Wang Y,Hink M, Wallace M, et al. Characterization of Aerosols Generated During Patient Care Activities. Clin Infect Dis. 2017; doi.org/10.1093/cid/cix535
Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, Chan KH, et al. Influenza virus in human exhaled breath: an observational study. PLoS One. 2008;3:e2691.
Article
Google Scholar
Stelzer-Braid S, Oliver BG, Blazey AJ, Argent E, Newsome TP, Rawlinson WD, et al. Exhalation of respiratory viruses by breathing, coughing, and talking. J Med Virol. 2009;81:1674–9.
Article
Google Scholar
Lindsley WG, Noti JD, Blachere FM, Thewlis RE, Martin SB, Othumpangat S, et al. Viable influenza a virus in airborne particles from human coughs. J Occup Environ Hyg. 2015;12:107–13.
Article
CAS
Google Scholar
Lindsley WG, Blachere FM, Beezhold DH, Thewlis RE, Noorbakhsh B, Othumpangat S, et al. Viable influenza a virus in airborne particles expelled during coughs vs. Exhalations Influenza Other Respir Viruses. 2016;10:404–13.
Article
Google Scholar
Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, Ehrman S, Milton DK. EMIT Consortium Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc Natl Acad Sci U S A, 2018;115:1081–6.
Yang W, Elankumaran S, Marr LC. Concentrations and size distributions of airborne influenza a viruses measured indoors at a health Centre, a day-care Centre and on aeroplanes. J R Soc Interface. 2011;8:1176–84.
Article
Google Scholar
Bischoff WE, Swett K, Leng I, Peters TR. Exposure to influenza virus aerosols during routine patient care. J Infect Dis. 2013;207:1037–46.
Article
Google Scholar
Leung NH, Zhou J2, Chu DK, Yu H, Lindsley WG, Beezhold DH, et al. Quantification of Influenza Virus RNA in Aerosols in Patient Rooms PLoS One 2016;11:e0148669.
Tang JW, Gao CX, Cowling BJ, Koh GC, Chu D, Heilbronn C, et al. Absence of detectable influenza RNA transmitted via aerosol during various human respiratory activities--experiments from Singapore and Hong Kong. PLoS One. 2014;9:e107338.
Article
Google Scholar
Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog. 2013;9:e1003205.
Article
CAS
Google Scholar
Hatagishi E, Okamoto M, Ohmiya S, Yano H, Hori T, Saito W, et al. Establishment and clinical applications of a portable system for capturing influenza viruses released through coughing. PLoS One. 2014;9:e103560.
Article
Google Scholar
Koster F, Gouveia K, Zhou Y, Lowery K, Russell R, MacInnes H, et al. Exhaled aerosol transmission of pandemic and seasonal H1N1 influenza viruses in the ferret. PLoS One. 2012;7:e33118.
Article
CAS
Google Scholar
Goldmann DA. Transmission of viral respiratory infections in the home. Pediatr Infect Dis J. 2000;19(10 Suppl):S97–102.
Article
CAS
Google Scholar
Goldmann DA. Epidemiology and prevention of pediatric viral respiratory infections in health-care institutions. Emerg Infect Dis. 2001;7:249–53.
Article
CAS
Google Scholar
Salgado CD, Farr BM, Hall KK, Hayden FG. Influenza in the acute hospital setting. Lancet Infect Dis. 2002;2:145–55.
Article
Google Scholar
Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis. 2003;37:1094–101.
Article
Google Scholar
Hall CB. The spread of influenza and other respiratory viruses: complexities and conjectures. Clin Infect Dis. 2007;45:353–9.
Article
Google Scholar
Mathur U, Bentley DW, Hall CB. Concurrent respiratory syncytial virus and influenza a infections in the institutionalized elderly and chronically ill. Ann Intern Med. 1980;93:49–52.
Article
CAS
Google Scholar
Jefferson T, Del Mar CB, Dooley L, Ferroni E, Al-Ansary LA, Bawazeer GA, et al. Physical intervention to interrupt and reduce the spread of respiratory viruses: a Cochrane review. Health Technol Assess. 2010;14:347–476.
Google Scholar
Jaax N, Jarhlign P, Gesibert T, Geisbert S, Steele K, McKee K, et al. Transmission of Ebola virus (Zaire strain) to uninfected control monkeys in a biocontainment laboratory. Lancet. 1995;346:1669–71.
Article
CAS
Google Scholar
Weingartl HM, Embury-Hyatt C, Nfon C, Leung A, Smith G, Kobinger G. Transmission of Ebola virus from pigs to non-human primates. Sci Rep. 2012. https://doi.org/10.1038/srep00811.
Twenhafel NA, Mattix ME, Johnson JC, Robinson CG, Pratt WD, Cashman KA, et al. Pathology of experimental aerosol Zaire ebolavirus infection in rhesus macaques. Vet Pathol. 2012;50:514–29.
Article
Google Scholar
Johnson E, Jaax N, White J, Jahrling P. Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. Int J Exp Path. 1995;76:227–36.
CAS
Google Scholar
Herbert AS, Kuehne AI, Barth JF, Ortiz RA, Nichols DK, Zak SE, et al. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J Virol. 2013;87:4952–64.
Article
CAS
Google Scholar
Pratt WD, Wang D, Nichols DK, Luo M, Woraratanadharm J, Dye JM, et al. Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. Clin Vaccine Immunol. 2010;17:572–81.
Article
CAS
Google Scholar
Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting an assessment of patient viral load as a predictor of outcome. J Virol. 2004;78:4330–41.
Article
CAS
Google Scholar
Kreuels B, Wichmann D, Emmerich P, Schmidt-Chanasit J, de Heer G, Kluge S, et al. A case of severe Ebola virus infection complicated by gram-negative septicemia. N Engl J Med. 2014;371:2394–401.
Article
CAS
Google Scholar
Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, et al. Clinical recognition and management of patients exposed to biological warfare agents. JAMA. 1997;278:399–411.
Article
CAS
Google Scholar
Little JW, Douglas RG Jr, Hall WJ, Roth FK. Attenuated influenza produced by experimental intranasal inoculation. J Med Virol. 1979;3:177–88.