Moyle PM, Toth I. Modern subunit vaccines: development, components and research opportunities. Chem Med Chem. 2013;8:360–76. PMID:23316023
Article
PubMed
CAS
Google Scholar
Brodie D, Schluger NW. The diagnosis of tuberculosis. Clin Chest Med. 2005;26:247–71.
Article
PubMed
Google Scholar
Auguste P, Tsertsvadze A, Pink J, Court R, McCarthy N, Sutcliffe P, et al: Comparing interferon-gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis: systematic review and meta-analysis. BMC Infect Dis. 2017 Mar 9;17(1):200. PMID:28274215; PMCID:PMC5343308.
Gudjónsdóttir MJ, Kötz K, Nielsen RS, Wilmar P, Olausson S, Wallmyr D, et al: Relation between BCG vaccine scar and an interferon-gamma release assay in immigrant children with "positive" tuberculin skin test (≥10 mm). BMC Infect Dis. 2016 Oct 6;16(1):540. PMID:27716176; PMCID:PMC5052808.
Ewer K, Deeks J, Alvarez L, Bryant G, Waller S, Andersen P, et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet. 2003;361:1168–73. PMID:12686038
Article
PubMed
Google Scholar
Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet. 2000;356:1099–104. PMID:11009160
Article
PubMed
CAS
Google Scholar
Yan L, Xiao H, Han M, Zhang Q: Diagnostic value of T-SPOT.TB interferon-γ release assays for active tuberculosis. Exp Ther Med 10: 345–351, 2015. PMID:26170960; PMCID: PMC4486813.
Feng Y, Diao N, Shao L, Wu J, Zhang S, Jin J, et al: Interferon-gamma release assay performance in pulmonary and extrapulmonary tuberculosis. PLoS One 7: e32652, 2012. PMID:22427859; PMCID:PMC3302779.
Kwang-Sook Woo, Byoung-Gwon Kim, Jae-Lim Choi, Kim BR, Kim KH, Neutrophil-to-Lymphocyte Ratio Is Associated with Impaired Interferon-Gamma Release to Phytohemagglutinin. PLoS One. 2015; 10(5): e0125794. PMID:25961292; PMCID:PMC4427286.
Lei Bao, Tao Li, Ni Diao, Shen Y, Shao L, Zhang Y, et al: Fluctuating Behavior and Influential Factors in the Performance of the QuantiFERON-TB Gold In-Tube Assay in the Diagnosis of Tuberculosis. PLoS One. 2015; 10(8): e0103763. PMID: 26287382; PMCID: PMC4545827.
Marc Tebruegge, Hans de Graaf, Priya Sukhtankar, Elkington P, Marshall B, Schuster H, et al: Extremes of Age Are Associated with Indeterminate QuantiFERON-TB Gold Assay Results. J Clin Microbiol. 2014 Jul; 52(7): 2694–2697. PMID:24829238; PMCID:PMC4097686.
Martine G Aabye, Thomas Stig Hermansen, Morten Ruhwald, Praygod G, Faurholt-Jepson G, Jeremiah K et al: Negative effect of smoking on the performance of the QuantiFERON TB gold in tube test. BMC Infect Dis. 2012; 12: 379. PMID:23270417; PMCID:PMC3546031.
Yoon Jee Lee, Jaehee Lee, Yi Young Kim, Won DI, Cha SI, Park JY, et al: Performance of whole-blood interferon-gamma release assay in patients admitted to the emergency department with pulmonary infiltrates. BMC Infect Dis. 2011; 11: 107. PMID:21513568; PMCID:PMC3107174.
Casetti R, Martino A. The plasticity of gamma delta T cells: innate immunity, antigen presentation and new immunotherapy. Cellular & Molecular Immunology. 2008;5(3):161–170. PMID:18582397;PMCID:PMC4651290.
Gioia C, Agrati C, Goletti D, Vinsenti D, Carrara S, Amicosante M, et al. Different cytokine production and effector/memory dynamics of αβ+ or γδ+ T-cell subsets in the peripheral blood of patients with active pulmonary tuberculosis. Int J Immunopathol Pharmacol. 2003;16(3):247–52. PMID:14611728
Article
PubMed
CAS
Google Scholar
Kunzmann V, Kimmel B, Herrmann T, Einsele H, Wilhelm M (2009) Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells. Immunology 126: 256–267. PMID:18775028; PMCID: PMC 2632687.
Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gammadelta T cells. Immunobiology. 2008;213:173–82. PMID:18406365
Article
PubMed
CAS
Google Scholar
Haas W, Tonegawa S. Development and selection of γδ T cells. Curr Opin Immunol. 1992;4(2):147–55. PMID:17291276
Article
PubMed
CAS
Google Scholar
Girardi M. Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol. 2006;126:25–31. PMID:16417214
Article
PubMed
CAS
Google Scholar
Morita CT, Mariuzza RA, Brenner MB. Antigen recognition by human gamma delta T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol. 2000;22:191–217. PMID:11116953
Article
PubMed
CAS
Google Scholar
Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H, et al. Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 2003;544:4–10. PMID:12782281
Article
PubMed
CAS
Google Scholar
Spencer CT, Abate G, Blazevic A, Hoft DF. Only a subset of phosphoantigen-responsive γδ T cell mediated protective tuberculosis immunity. J Immunol. 2008;181:4471–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morita CT, Lee HK, Wang H, Li H, Mariuzza RA, Tanaka Y. Structural features of nonpeptide prenyl pyrophosphates that determine their antigenicity for human γδ T cells. J Immunol. 2001;167(1):36–41.
Article
PubMed
CAS
Google Scholar
Meraviglia S, El Daker S, Dieli F, Martini F, Martino A (2011) gammadelta T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol: 2011: 587315. PMID:21253470;PMCID:PMC3022180.
Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H. Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol. 2007;179:8287–8296. PMID:18056373;PMCID:PMC2865221.
Chen Y, Shao L, Ali Z, Cai J, Chen ZW. NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V{gamma}2V{delta}2 T-cell expansion. Blood. 2008;111:4220–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gioia C, Agrati C, Casetti R, Cairo C, Borsellino G, Battistini L, et al. Lack of CD27-CD45RA-V gamma 9V delta 2+ T cell effectors in immuno-compromised hosts and during active pulmonary tuberculosis. J Immunol. 2002;168(3):1484. PMID:11801693
Article
PubMed
CAS
Google Scholar
Delgado JC, Tsai EY, Thim S, Baena A, Boussiotis VA, Reynes JM, et al. Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc Natl Acad Sci U S A. 2002;99(11):7576. PMID:12032325;PMCID:PMC124289.
Szereday L, Baliko Z, Szekeres-Bartho J. The role of Vdelta2+T- cells in patients with active Mycobacterium tuberculosis infection and tuberculin anergy. Int J Tuberc Lung Dis. 2008;12:262–8. PMID:18284830
PubMed
CAS
Google Scholar
Manfredi AA, Heltai S, Rovere P, Sciorati C, Paolucci C, Vaiani R, et al. Mycobacterium tuberculosis exploits the CD95/CD95 ligand system of γδ T cells to cause apoptosis. Eur J Immunol. 1998;28(6):1798–806. PMID:9645360
Article
PubMed
CAS
Google Scholar
Li B, Bassiri H, Rossman MD, Kramer P, Eyuboglu AF, Torres M, et al. Involvement of the Fas/Fas ligand pathway in activation-induced cell death of mycobacteria-reactive human gamma delta T cells: a mechanism for the loss of gamma delta T cells in patients with pulmonary tuberculosis. J Immunol. 1998;161:1558–67. PMID:9686624
PubMed
CAS
Google Scholar
Liping Yan, Haiyan Cui, Heping Xiao, Qing Zhang. Anergic Pulmonary Tuberculosis Is Associated with Contraction of the Vd2+T Cell Population, Apoptosis and Enhanced Inhibitory Cytokine Production. PLOS ONE. 2013, 8(8): e71245. PMID:23936496;PMCID:PMC3732239.
Li B, Rossman MD, Imir T, Oner-Eyuboglu AF, Lee CW, Biancaniello R, et al. Disease-specific changes in gammadelta T cell repertoire and function in patients with pulmonary tuberculosis. J Immunol157. 1996:4222–9. PMID:8892660
Dieli F, Troye-Blomberg M, Ivanyi J. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by V-γ9/Vδ2 T lymphocytes. J Infect Dis. 2001;184(8):1082–5.
Article
PubMed
CAS
Google Scholar
Dieli F, Sireci G, Caccamo N, Di Sano C, Titone L, Romano A, et al. Selective depression of interferon-γ and granulysin production with increase of proliferative response by Vγ9/Vδ2 T cells in children with tuberculosis. J Infect Dis. 2002;186(12):1835–9. PMID:12447771
Article
PubMed
CAS
Google Scholar
Botha T, Ryffel B. Reactivation of latent tuberculosis infection in TNF-deficient mice. J Immunol. 2003;171:3110–8. PMID:12960337
Article
PubMed
CAS
Google Scholar
Casetti R, Martino A (2008) The plasticity of gamma delta T cells: innate immunity, antigen presentation and new immunotherapy. Cell Mol Immunol 5: 161–170. PMID:18582397;PMCID:PMC4651290.
Price NM, Gilman RH, Uddin J, Recavarren S, Friedland JS. Unopposed matrix metalloproteinase-9 expression in human tuberculosis granuloma and the role of TNF alpha dependent monocyte networks. J Immunol. 2003;171:5579–86. PMID: 14607966
Article
PubMed
CAS
Google Scholar
van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, Kullberg BJ, van Crevel R, van de Meer JW, et al. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol. 2010;88(2):227–32. PMID:20299682
Article
PubMed
CAS
Google Scholar
Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177(7):4662–9. PMID:16982905
Article
PubMed
CAS
Google Scholar
Szereday L, Baliko Z, Szekeres-Bartho J. The role of Vdelta2+Tcells in patients with active Mycobacterium tuberculosis infection and tuberculin anergy. Int J Tuberc Lung Dis. 2008;12:262–8. PubMed: 18284830
PubMed
CAS
Google Scholar
Pinheiro MB, Antonelli LR, Sathler-Avelar R, Vitelli-Avelar DM, Spindola-de-Miranda S, et al. CD4-CD8-alphabeta and gammadelta T cells display inflammatory and regulatory potentials during human tuberculosis. PLoS One. 2012;7:e50923. https://doi.org/10.1371/journal.pone.0050923. PubMed: 23239994.
Article
PubMed
PubMed Central
CAS
Google Scholar