World Health Organization. HIV drug resistance report 2017. Geneva: World Health Organization. 2017. Licence: CC BY-NC-SA 3.0 IGO.
Mbuagbaw L, Aves T, Borhan S, Leenus A, Jordan MJ, Parkin N, et al. Systematic reviews and meta-analyses used to inform the World health Organization Guidelines on the public health response to pre-treatment HIV drug resistance. 2017. [Publication pending]. Web Annex 2. In: Guidelines on the public health response to pre-treatment HIV drug resistance. Geneva: World health Organization; 2017. available at http://who.int/hiv/pub/guidelines/hivdr-guidelines-2017/.
Google Scholar
WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and prevent HIV infection: recommendations for a public health approach. In: Second edition; 2016. http://apps.who.int/iris/bitstream/10665/208825/1/9789241549684_eng.pdf?ua=1.
Google Scholar
Prosperi MC, Mackie N, Di Giambenedetto S, Zazzi M, Camacho R, Fanti I, et al. Detection of drug resistance mutations at low plasma HIV-1 RNA load in a European multicentre cohort study. J Antimicrob Chemother. 2011;66:1886–96.
Article
CAS
PubMed
Google Scholar
Pham QD, Wilson DP, Nguyen TV, Do NT, Truong LX, Nguyen LT, et al. Projecting the epidemiological effect, cost-effectiveness and transmission of HIV drug resistance in Vietnam associated with viral load monitoring strategies. J Antimicrob Chemother. 2016;71:1367–79.
Article
PubMed
Google Scholar
De Luca A, Marazzi MC, Mancinelli S, Ceffa S, Altan AM, Buonomo E, et al. Prognostic value of virological and immunological responses after 6 months of antiretroviral treatment in adults with HIV-1 infection in sub-Saharan Africa. J Acquir Immune Defic Syndr. 2012;59:236–44.
Article
PubMed
Google Scholar
Rawizza HE, Chaplin B, Meloni ST, Eisen G, Rao T, Sankalè JL, et al. Immunologic criteria are poor predictors of virologic outcome: implications for HIV treatment monitoring in resource-limited settings. Clin Infect Dis. 2011;53:1283–90.
Article
PubMed
PubMed Central
Google Scholar
Sigaloff KC, Hamers RL, Wallis CL, Kityo C, Siwale M, Ive P, et al. Unnecessary antiretroviral treatment switches and accumulation of HIV resistance mutations; two arguments for viral load monitoring in Africa. J Acquir Immune Defic Syndr. 2011;58:23–31.
Article
CAS
PubMed
Google Scholar
Ruperez M, Pou C, Macaluve S, Cedeno S, Luis L, Rodriguez J, et al. Determinants of virological failure and antiretroviral drug resistance in Mozambique. J Antimicrob Chemother. 2015;70:2639–47.
Article
CAS
PubMed
Google Scholar
DREAM Community of Sant’Egidio. The goal of a dream. Achieving millenium development goals. http://dream.santegidio.org/wp-content/uploads/2015/01/DREAM_MDG_def.pdf.
UNAIDS.HIV and AIDS estimates. 2015. http://www.unaids.org/en/regionscountries/countries/mozambique/.
Bila DCA, Boullosa LT, Vubli AS, Mabunda NJ, Abreu CM, Ismael N, et al. Trends in prevalence of HIV-1 drug resistance in a public clinic in Maputo, Mozambique. PLoS One. 2015;10:e0130580. doi:10.1371/journal.pone.0130580.
Article
PubMed
PubMed Central
Google Scholar
De Luca A, Hamers RL, Shapiro JM. Antiretroviral treatment sequencing strategies to overcome HIV type 1 drug resistance in adolescents and adults in low-middle-income countries. J Infect Dis. 2013;207:S63–9.
Article
PubMed
Google Scholar
Sigaloff KC, Ramatsebe T, Viana R, de Wilt TF, Wallis CL, Stevens WS. Accumulation of HIV drug resistance mutations in patients failing first-line antiretroviral treatment in South Africa. AIDS Res Hum Retrovirus. 2012;28:171–5.
Article
CAS
Google Scholar
Gupta RK, Ford D, Mulenga V, Walker AS, Kabamba D, Kalumbi M, et al. Drug resistance in human immunodeficiency virus type-1 infected Zambian children using adult fixed dose combination stavudine, lamivudine, and nevirapine. Pediatr Infect Dis J. 2010;29:e57–62.
Article
PubMed
Google Scholar
Goodall RL, Dunn DT, Nkurunziza P, Mugarura L, Pattery T, Munderi P, et al. Rapid accumulation of HIV-1 thymidine analogue mutations and phenotypic impact following prolonged viral failure on zidovudine-based first-line ART in sub-Saharan Africa. J Antimicrob Chemother. 2017;72:1450–5.
Article
PubMed
PubMed Central
Google Scholar
Boender TS, Kityo CM, Boerma RS, Hamers RL, Ondoa P, Wellington M, et al. Accumulation of HIV-1 drug resistance after continued virological failure on first-line ART in adults and children in sub-Saharan Africa. J Antimicrob Chemother. 2016;71:2918–27.
Article
PubMed
Google Scholar
Guichet E, Aghokeng A, Serrano L, Bado G, Toure-Kane C, Eymard-Duvernay S, et al. Short Communication: High viral load and multidrug resistance due to late switch to second-line regimens could be a major obstacle to reach the 90-90-90 UNAIDS objectives in sub-Saharan Africa. AIDS Res Hum Retrovir. 2016;32:1159–62.
Article
CAS
PubMed
Google Scholar
Brehm JH, Koontz DL, Wallis CL, Shutt KA, Sanne I, Wood R, et al. Frequent emergence of N348I in HIV-1 subtype C reverse transcriptase with failure of initial therapy reduces susceptibility to reverse-transcriptase inhibitors. Clin Infect Dis. 2012;55:737–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sigaloff KC, Hamers RL, Wallis CL, Kityo C, Siwale M, Ive P, et al. Second-line antiretroviral treatment successfully resuppresses drug-resistant HIV-1 after first-line failure: prospective cohort in sub-Saharan Africa. J Infect Dis. 2012;11:1739–44.
Article
Google Scholar
Paton NI, Kityo C, Thompson J, Nankya I, Bagenda L, Hoppe A, et al. Nucleoside reverse-transcriptase inhibitor cross-resistance and outcomes from second-line antiretroviral therapy in the public health approach: an observational analysis within the randomised, open-label, EARNEST trial. Lancet HIV. 2017;4:e341–8.
Article
PubMed
PubMed Central
Google Scholar
Boyd MA, Moore CL, Molina JM, Wood R, Madero JS, Wolff M, et al. Baseline HIV-1 resistance, virological outcomes, and emergent resistance in the SECOND-LINE trial: an exploratory analysys. Lancet HIV. 2015;2:e42–51.
Article
PubMed
Google Scholar