This study documents the national epidemiology of CDI among cancer patients discharged from U.S. community hospitals over a 10-year period. We found that CDI incidence increased among cancer patients from 2001 to 2010. Furthermore, cancer patients with CDI are at greater risk for mortality and a longer hospital stay.
The rates of CDI among cancer patients found here are relatively large compared to the general population of U.S. hospitalized adults. In a study using the complete NHDS survey data sample, Reveles et al. [9] found that CDI incidence estimates in the general population of U.S. hospitalized adults grew from 4.5 to 8.2 CDI discharges per 1000 total discharges between 2001 and 2010. In parallel with the cancer population, overall CDI incidence was found to peak in 2008. In an analysis of data from the Healthcare Cost and Utilization Project, Lucado et al. [10] found that between 2000 and 2008, the U.S. saw a 2.5-fold increase in the number of hospitalizations with any CDI discharge diagnosis. The number of hospital stays stabilized between 2008 and 2009, however. In Canada, reports of CDI epidemics were found to occur around the same period [11,12,13,14], with mortality increasing drastically between 1997 and 2005. And although limited information on the increased incidence of CDI is available across Europe, a network of laboratories in 34 European countries estimated a CDI incidence of 4.1 per 10,000 patient-days per hospital (range 0.0–36.3) in 2008 [15, 16].
The rise of CDI has been partially credited to the spread of the hypervirulent strain of C. difficile categorized as North American pulsed-field Type 1, restriction enzyme analysis type BI, and PCR ribotype 027 (NAP1/BI/027). By 2008, CDIs due to the NAP1/BI/027 strain were reported in 40 U.S. states and across Canada, becoming endemic in some North American healthcare settings [17]. In a survey evaluating the spread of ribotype 027 in Europe, this C. difficile strain had been found in 16 European countries by 2008 [18]. This same year, Bauer et al. estimated a 5% prevalence of ribotype 027 across 34 European countries [16]. More recently, the emergence of the ribotype 078 has been associated with disease in younger patients more frequently prescribed fluoroquinolones and with community-associated or indeterminate CDI, as compared to ribotype 027 patients in the Netherlands [19].
Few prior studies have evaluated the rate of CDI in cancer. Kamboj et al. [4] conducted a survey of 11 U.S. cancer centers, aiming to determine the rate of hospital-onset CDI (HO-CDI) in hematopoietic stem cell transplant (HSCT) and cancer patients. Centers using polymerase chain reaction (PCR) as a detection method were found to have a higher median HO-CDI rate compared to those using enzyme immunoassay (1.72 vs. 0.9 per 1000 patient days, respectively), although both rates were higher than those reported for U.S. patients overall. A retrospective review of leukemia patients revealed that CDI occurred in 7% of all cycles of myelosuppressive chemotherapy. Lastly, an analysis of 134 patients found that CDI occurred in 18% of patients with acute myeloid leukemia and in 9% of all treatment courses [20, 21].
Prior studies have demonstrated less favorable health outcomes among cancer patients who develop CDI compared to those who do not. In a retrospective analysis of 186 U.S. hospitals, Campbell et al. [22] found that high-risk patients suffering from HO-CDI, including those with cancer, have significantly longer LOS compared to non-CDI controls. Similarly, a retrospective cohort study found that CDI inpatients receiving chemotherapy for hematologic malignancies had greater mean length of stay compared to similar patients without malignancies. This increase in stay was largely attributed to cancer-related care, as the cancer patients often required neutropenia management, total parenteral nutrition, or pain control [23]. In a study of 5594 adult patients receiving cancer treatment with CDI, CDI-related mortality was 19.7% [24]. This is greater than the 9.1–16.3% mortality reported by others, perhaps due to differences in duration of neutropenia or dissimilarities in study populations [25, 26]. Neutropenia was found to independently predict CDI-related mortality in these patients [24].
Cancer patients maintain a particularly high risk for CDI. Given their frequent or prolonged hospitalizations, patients may have a greater degree of exposure to C. difficile. Duration of hospital stay has been previously linked to CDI, as well as recurrent CDI [27, 28]. Prince et al. [29] reported that 32% of cancer patients undergoing chemotherapy had at least one hospitalization, and cancer inpatients have been found to have longer median LOS compared to non-cancer patients. In a retrospective study of inpatients, 36% of cancer patients were found to have LOS > 7 days compared to 26% of non-cancer patients [30]. Schuller et al. [31] found that over the course of a year, 13% of patients on a pediatric oncology ward developed CDI. Analysis illustrated that duration of hospital stay was a primary determinant of infection, given patients’ increased likelihood of intensive neutropenia treatment or long-term antibiotic exposure. In 2009, NHDS data estimated that the average LOS for an adult primary cancer diagnosis was 1.6 days longer than a non-cancer diagnosis, with secondary malignancies, lung cancer, and prostate cancer leading in number of inpatient discharges [32].
CDI rates varied based upon cancer type. CDI was found to be over 2.5 times more common among patients with blood cancers compared to those with solid cancers. This disparity may be due to disproportionate CDI risk factors among blood cancer patients. First, patients with blood cancers might receive antibiotics at a higher rate due to a higher incidence of neutropenic fever resulting from cytotoxic chemotherapy and direct effects on host immunity [33]. Furthermore, patients with blood cancers tend to have a longer length of stay during hospitalizations compared to solid tumor patients [32]. Lastly, blood cancers have the therapeutic option of HSCT. When comparing HSCT recipients versus other cancer patients, Chopra et al. [5] reported HSCT recipients to have 1.4 times higher CDI rates. It is hypothesized these differences are due to chemotherapy regimens and antibiotic use leading up to transplantation, in addition to prolonged hospital stay [6, 34,35,36]. The distinction between blood cancer versus solid cancer is of importance in CDI prevention and treatment. Due to the increased risk associated with hematologic malignancies, more diligent antimicrobial stewardship may be warranted along with potentially more aggressive CDI treatment.
Immunosuppression from host immunosenescence, the disease, or drug therapy could predispose cancer patients to clinical infection, rather than colonization, as the patient might not be able to mount as strong of a host response. Older age [16, 27], severe underlying disease [16, 27], and immunosuppressive therapy [37, 38] have all previously been associated with CDI. Furthermore, prior studies have shown that immunosuppressed patients who develop CDI are at higher risk for poor clinical outcomes [5, 6].
Lastly, cancer patients are frequently exposed to medications and other factors that can alter the gut microbiota or alter the host response. The following classes of medications or therapies are used frequently among cancer patients and have been previously associated with CDI: antibiotics [16, 27, 37,38,39], certain chemotherapeutic agents [40], gastric acid suppressing medications [27], and manipulation of the gastrointestinal tract (e.g., enteral feedings, enemas, stimulants) [41].
Knowledge of the burden of CDI among cancer patients is important for several reasons. First, cancer patients can be more readily identified as a high-risk population in whom antimicrobial stewardship and other infection control processes should be targeted. Furthermore, clinicians might choose CDI therapy differently for cancer patients as compared to non-cancer patients. For example, clinicians might choose a more aggressive or costly therapy in cancer patients to improve clinical outcomes. A prior randomized controlled trial found that, among cancer patients, fidaxomicin use resulted in higher clinical cure rates and fewer recurrences as compared to those treated with vancomycin [42].
This study has limitations, predominately due to its retrospective design. First, use of ICD-9-CM codes to identify CDI and cancer diagnoses could result in misclassification bias, as these diagnoses could not be confirmed. However, a prior study noted relatively high sensitivity (78%) and specificity (99.7%) of the CDI ICD-9-CM code compared to microbiological data [43]. Additionally, data related to specific CDI diagnostic procedures were unavailable and could have affected incidence rates, as more sensitive detection methods (e.g., PCR) have been used more commonly in recent years. Lack of these diagnostic tests and other CDI-specific information precluded the analysis of specific C. difficile strains, presence of CDI on admission, and stratification by initial and recurrent CDI episodes. Factors that could have influenced CDI outcomes, but were unavailable to control for in analyses included: medications, other health care exposures, and severity of CDI or cancer. In the case of disease severity, patients with cancer or severe illness may suffer prolonged hospitalization or require additional medications, perhaps leading to increased mortality and LOS overall. Lastly, the NHDS include only community hospitals; therefore, our results might not be generalizable to federal or long-term care hospitals or outpatient facilities.