Diekema DJ, Pfaller MA, Jones RN, Doern GV, Kugler KC, Beach ML, Sader HS. Trends in antimicrobial susceptibility of bacterial pathogens isolated from patients with bloodstream infections in the USA, Canada and Latin America. SENTRY participants group. Int J Antimicrob Agents. 2000;13(4):257–71.
Article
CAS
PubMed
Google Scholar
Sader HS, Jones RN, Andrade-Baiocchi S, Biedenbach DJ, Group SP. Four-year evaluation of frequency of occurrence and antimicrobial susceptibility patterns of bacteria from bloodstream infections in Latin American medical centers. Diagn Microbiol Infect Dis. 2002;44(3):273–80.
Article
PubMed
Google Scholar
Luzzaro F, Ortisi G, Larosa M, Drago M, Brigante G, Gesu G. Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn Microbiol Infect Dis. 2011;69(4):363–9.
Article
PubMed
Google Scholar
Watanakunakorn C, Perni SC. Proteus Mirabilis bacteremia: a review of 176 cases during 1980-1992. Scand J Infect Dis. 1994;26(4):361–7.
Article
CAS
PubMed
Google Scholar
Tumbarello M, Trecarichi EM, Fiori B, Losito AR, D'Inzeo T, Campana L, Ruggeri A, Di Meco E, Liberto E, Fadda G, et al. Multidrug-resistant Proteus Mirabilis bloodstream infections: risk factors and outcomes. Antimicrob Agents Chemother. 2012;56(6):3224–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus Mirabilis. Clin Microbiol Rev. 2008;21(1):26–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlowsky JA, Jones ME, Thornsberry C, Friedland IR, Sahm DF. Trends in antimicrobial susceptibilities among Enterobacteriaceae isolated from hospitalized patients in the United States from 1998 to 2001. Antimicrob Agents Chemother. 2003;47(5):1672–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endimiani A, Luzzaro F, Brigante G, Perilli M, Lombardi G, Amicosante G, Rossolini GM, Toniolo A. Proteus Mirabilis bloodstream infections: risk factors and treatment outcome related to the expression of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005;49(7):2598–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen-Nahum K, Saidel-Odes L, Riesenberg K, Schlaeffer F, Borer A. Urinary tract infections caused by multi-drug resistant Proteus Mirabilis: risk factors and clinical outcomes. Infection. 2010;38(1):41–6.
Article
CAS
PubMed
Google Scholar
D'Andrea MM, Literacka E, Zioga A, Giani T, Baraniak A, Fiett J, Sadowy E, Tassios PT, Rossolini GM, Gniadkowski M, et al. Evolution and spread of a multidrug-resistant Proteus Mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob Agents Chemother. 2011;55(6):2735–42.
Article
PubMed
PubMed Central
Google Scholar
Luzzaro F, Brigante G, D'Andrea MM, Pini B, Giani T, Mantengoli E, Rossolini GM, Toniolo A. Spread of multidrug-resistant Proteus Mirabilis isolates producing an AmpC-type beta-lactamase: epidemiology and clinical management. Int J Antimicrob Agents. 2009;33(4):328–33.
Article
CAS
PubMed
Google Scholar
Pagani L, Migliavacca R, Pallecchi L, Matti C, Giacobone E, Amicosante G, Romero E, Rossolini GM. Emerging extended-spectrum beta-lactamases in Proteus Mirabilis. J Clin Microbiol. 2002;40(4):1549–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsakris A, Ikonomidis A, Poulou A, Spanakis N, Pournaras S, Markou F. Transmission in the community of clonal Proteus Mirabilis carrying VIM-1 metallo-beta-lactamase. J Antimicrob Chemother. 2007;60(1):136–9.
Article
CAS
PubMed
Google Scholar
Korytny A, Riesenberg K, Saidel-Odes L, Schlaeffer F, Borer A. Bloodstream infections caused by multi-drug resistant Proteus Mirabilis: epidemiology, risk factors and impact of multi-drug resistance. Infect Dis (Lond). 2016;48(6):428–31.
Article
CAS
Google Scholar
Kurihara Y, Hitomi S, Oishi T, Kondo T, Ebihara T, Funayama Y, Kawakami Y. Characteristics of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus Mirabilis. J Infect Chemother. 2013;19(5):799–805.
Article
CAS
PubMed
Google Scholar
Park YJ, Lee S, Kim YR, Oh EJ, Woo GJ, Lee K. Occurrence of extended-spectrum (beta)-lactamases and plasmid-mediated AmpC (beta)-lactamases among Korean isolates of Proteus Mirabilis. J Antimicrob Chemother. 2006;57(1):156–8.
Article
CAS
PubMed
Google Scholar
Park SD, Uh Y, Lee G, Lim K, Kim JB, Jeong SH. Prevalence and resistance patterns of extended-spectrum and AmpC beta-lactamase in Escherichia coli, Klebsiella pneumoniae, Proteus Mirabilis, and salmonella serovar Stanley in a Korean tertiary hospital. APMIS. 2010;118(10):801–8.
Article
PubMed
Google Scholar
Song W, Kim J, Bae IK, Jeong SH, Seo YH, Shin JH, Jang SJ, Uh Y, Shin JH, Lee MK, et al. Chromosome-encoded AmpC and CTX-M extended-spectrum beta-lactamases in clinical isolates of Proteus Mirabilis from Korea. Antimicrob Agents Chemother. 2011;55(4):1414–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
CLSI. Performance Standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. Clinical and Laboratory Standards Institute: Wayne; 2014.
Google Scholar
CLSI. Performance Standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute: Wayne; 2011.
Google Scholar
Lee K, Yong D, Yum JH, Kim HH, Chong Y. Diversity of TEM-52 extended-spectrum beta-lactamase-producing non-typhoidal salmonella isolates in Korea. J Antimicrob Chemother. 2003;52(3):493–6.
Article
CAS
PubMed
Google Scholar
Chong Y, Lee K, Okamoto R, Inoue M. Characteristics of extended-spectrum β-lactam hydrolyzing activity of Klebsiella pneumoniae and _Escherichia coli strains isolated from clinical specimens. Korean J Infect Dis. 1997;29(6):477–86.
Google Scholar
Park Y, Kang HK, Bae IK, Kim J, Kim JS, Uh Y, Jeong SH, Lee K. Prevalence of the extended-spectrum beta-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J Lab Med. 2009;29(3):218–23.
Article
CAS
PubMed
Google Scholar
Kang CI, Kim SH, Park WB, Lee KD, Kim HB, Oh MD, Kim EC, Choe KW. Bloodstream infections caused by Enterobacter species: predictors of 30-day mortality rate and impact of broad-spectrum cephalosporin resistance on outcome. Clin Infect Dis. 2004;39(6):812–8.
Article
PubMed
Google Scholar
International Classification of Disease. World Health Organization. 2014.
Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;60(5):913–20.
Article
CAS
PubMed
Google Scholar
Wong-Beringer A, Hindler J, Loeloff M, Queenan AM, Lee N, Pegues DA, Quinn JP, Bush K. Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. Clin Infect. 2002;34(2):135–46.
Article
CAS
Google Scholar
Kim BN, Woo JH, Kim MN, Ryu J, Kim YS. Clinical implications of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteraemia. J Hosp Infect. 2002;52(2):99–106.
Article
PubMed
Google Scholar
Du B, Long Y, Liu H, Chen D, Liu D, Xu Y, Xie X. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med. 2002;28(12):1718–23.
Article
PubMed
Google Scholar
Menashe G, Borer A, Yagupsky P, Peled N, Gilad J, Fraser D, Riesenberg K, Schlaeffer F. Clinical significance and impact on mortality of extended-spectrum beta lactamase-producing Enterobacteriaceae isolates in nosocomial bacteremia. Scand J Infect Dis. 2001;33(3):188–93.
Article
CAS
PubMed
Google Scholar
Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51. table of contents
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano N, Shibata N, Saitou Y, Nagano Y, Arakawa Y. Nosocomial outbreak of infections by Proteus Mirabilis that produces extended-spectrum CTX-M-2 type beta-lactamase. J Clin Microbiol. 2003;41(12):5530–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JY, Park YJ, Kim SI, Kang MW, Lee SO, Lee KY. Nosocomial outbreak by Proteus Mirabilis producing extended-spectrum beta-lactamase VEB-1 in a Korean university hospital. J Antimicrob Chemother. 2004;54(6):1144–7.
Article
CAS
PubMed
Google Scholar
Nakano R, Nakano A, Abe M, Inoue M, Okamoto R. Regional outbreak of CTX-M-2 beta-lactamase-producing Proteus Mirabilis in Japan. J Med Microbiol. 2012;61(Pt 12):1727–35.
Article
PubMed
Google Scholar
de Champs C, Bonnet R, Sirot D, Chanal C, Sirot J. Clinical relevance of Proteus Mirabilis in hospital patients: a two year survey. J Antimicrob Chemother. 2000;45(4):537–9.
Article
PubMed
Google Scholar
Nakamura T, Komatsu M, Yamasaki K, Fukuda S, Miyamoto Y, Higuchi T, Ono T, Nishio H, Sueyoshi N, Kida K, et al. Epidemiology of Escherichia coli, Klebsiella species, and Proteus Mirabilis strains producing extended-spectrum beta-lactamases from clinical samples in the Kinki region of Japan. Am J Clin Pathol. 2012;137(4):620–6.
Article
PubMed
Google Scholar
Wang JT, Chen PC, Chang SC, Shiau YR, Wang HY, Lai JF, Huang IW, Tan MC, Lauderdale TL, Hospitals T. Antimicrobial susceptibilities of Proteus Mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program. BMC Infect Dis. 2014;14:486.
Article
PubMed
PubMed Central
Google Scholar
Ho PL, Ho AY, Chow KH, Wong RC, Duan RS, Ho WL, Mak GC, Tsang KW, Yam WC, Yuen KY. Occurrence and molecular analysis of extended-spectrum {beta}-lactamase-producing Proteus Mirabilis in Hong Kong, 1999-2002. J Antimicrob Chemother. 2005;55(6):840–5.
Article
CAS
PubMed
Google Scholar
Wu JJ, Chen HM, Ko WC, Wu HM, Tsai SH, Yan JJ. Prevalence of extended-spectrum beta-lactamases in Proteus Mirabilis in a Taiwanese university hospital, 1999 to 2005: identification of a novel CTX-M enzyme (CTX-M-66). Diagn Microbiol Infect Dis. 2008;60(2):169–75.
Article
CAS
PubMed
Google Scholar
Tonkic M, Mohar B, Sisko-Kraljevic K, Mesko-Meglic K, Goic-Barisic I, Novak A, Kovacic A, Punda-Polic V. High prevalence and molecular characterization of extended-spectrum beta-lactamase-producing Proteus Mirabilis strains in southern Croatia. J Med Microbiol. 2010;59(Pt 10):1185–90.
Article
CAS
PubMed
Google Scholar
Kanayama A, Kobayashi I, Shibuya K. Distribution and antimicrobial susceptibility profile of extended-spectrum beta-lactamase-producing Proteus Mirabilis strains recently isolated in Japan. Int J Antimicrob Agents. 2015;45(2):113–8.
Article
CAS
PubMed
Google Scholar
Rudresh SM, Nagarathnamma T. Extended spectrum beta-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J Med Res. 2011;133:116–8.
CAS
PubMed
PubMed Central
Google Scholar
Uh Y, Hwang GY, Kwon O, Yoon KJ, Kim HY. Isolation frequency of extended spectrum b-lactamase producing Escherichia coli, Klebsiella species, and Proteus Mirabilis. Korean J Clin Microbiol. 2007;10(2):119–22.
Google Scholar
Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, pseudomonas and Acinetobacter. Trends Microbiol. 2006;14(9):413–20.
Article
CAS
PubMed
Google Scholar
Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zdanowicz I, Luzzaro F, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–74.
Article
CAS
PubMed
Google Scholar
Biendo M, Thomas D, Laurans G, Hamdad-Daoudi F, Canarelli B, Rousseau F, Castelain S, Eb F. Molecular diversity of Proteus Mirabilis isolates producing extended-spectrum beta-lactamases in a French university hospital. Clin Microbiol Infect. 2005;11(5):395–401.
Article
CAS
PubMed
Google Scholar
Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G, Italian ESG. Occurrence of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae in Italy: implications for resistance to beta-lactams and other antimicrobial drugs. Antimicrob Agents Chemother. 2002;46(1):196–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai HY, Chen YH, Tang HJ, Huang CC, Liao CH, Chu FY, Chuang YC, Sheng WH, Ko WC, Hsueh PR. Carbapenems and piperacillin/tazobactam for the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus Mirabilis. Diagn Microbiol Infect Dis. 2014;80(3):222–6.
Article
CAS
PubMed
Google Scholar
Tamma PD, Han JH, Rock C, Harris AD, Lautenbach E, Hsu AJ, Avdic E, Cosgrove SE, Antibacterial Resistance Leadership G. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis. 2015;60(9):1319–25.
PubMed
PubMed Central
Google Scholar
Ofer-Friedman H, Shefler C, Sharma S, Tirosh A, Tal-Jasper R, Kandipalli D, Sharma S, Bathina P, Kaplansky T, Maskit M, et al. Carbapenems versus Piperacillin-Tazobactam for bloodstream infections of Nonurinary source caused by extended-Spectrum Beta-Lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36(8):981–5.
Article
PubMed
Google Scholar
Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, Kim JH, Kim EC. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother. 2002;46(5):1481–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giske CG, Monnet DL, Cars O, Carmeli Y, ReAct-Action on Antibiotic R. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother. 2008;52(3):813–21.
Article
CAS
PubMed
Google Scholar
Maslikowska JA, Walker SA, Elligsen M, Mittmann N, Palmay L, Daneman N, Simor A. Impact of infection with extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J Hosp Infect. 2016;92(1):33–41.
Article
CAS
PubMed
Google Scholar
Ramphal R, Ambrose PG. Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis. 2006;42(Suppl 4):S164–72.
Article
CAS
PubMed
Google Scholar
Henshke-Bar-Meir R, Yinnon AM, Rudensky B, Attias D, Schlesinger Y, Raveh D. Assessment of the clinical significance of production of extended-spectrum beta-lactamases (ESBL) by Enterobacteriaceae. Infection. 2006;34(2):66–74.
Article
CAS
PubMed
Google Scholar
Rasheed JK, Anderson GJ, Queenan AM, Biddle JW, Oliver A, Jacoby GA, Bush K, Tenover FC. TEM-71, a novel plasmid-encoded, extended-spectrum beta-lactamase produced by a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2002;46(6):2000–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Ishii Y, Chang FY, Yamaguchi K, Ho M, Siu LK. CTX-M-14, a plasmid-mediated CTX-M type extended-spectrum beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother. 2002;46(6):1985–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon P, Davies P, Hollingworth W, Stoddart M, MacGowan A. A systematic review of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry compared to routine microbiological methods for the time taken to identify microbial organisms from positive blood cultures. Eur J Clin Microbiol Infect Dis. 2015;34(5):863–76.
Article
CAS
PubMed
Google Scholar
Verroken A, Defourny L, le Polain de Waroux O, Belkhir L, Laterre PF, Delmee M, Glupczynski Y. Clinical impact of MALDI-TOF MS identification and rapid susceptibility testing on adequate antimicrobial treatment in sepsis with positive blood cultures. PLoS One. 2016;11(5):e0156299.
Article
PubMed
PubMed Central
Google Scholar
Lin WH, Hwang JC, Tseng CC, Chang YT, Wu AB, Yan JJ, Wu JJ, Wang MC. Matrix-assisted laser desorption ionization-time of flight mass spectrometry accelerates pathogen identification and may confer benefit in the outcome of peritoneal dialysis-related peritonitis. J Clin Microbiol. 2016;54(5):1381–3.
Article
CAS
PubMed
PubMed Central
Google Scholar