Seroprevalence for hepatitis A antibodies varies according to age strata and region. In Assis Brasil, seroprevalence for hepatitis A antibodies in children 1 to 4 years of age was 16.67 %. Bensabath et al. [15] studied two neighboring cities in the Amazon, one in the state of Acre and the other in the state of Amazonas, and found very different seroprevalences between 1979 and 1984. Boca do Acre (Amazonas) had higher seroprevalences (45.80 % and 59.40 % in age strata 0 to 2 years of age and 3 to 4 years of age, respectively), while Sena Madureira had much lower seroprevalences (13.80 % and 37.50 % for the same age strata) [15]. In Labrea, another city neighboring Boca do Acre, seroprevalence for anti-HAV IgG ranged from 32.30 % in children 1 year of age to 34.30 % to children 4 years of age [3] in 2005. Therefore, the seroprevalence for anti-HAV antibodies found in our study is similar to other neighboring cities.
However, higher seroprevalence rates have been found in other Amazonian populations. In 1998, after a hepatitis outbreak, Assis et al. [5] found a seroprevalence for IgG-anti-HAV between 62.50 % and 76.90 % in children 3 to 4 years of age in the Amazon. Laffer et al. [16] found a seroprevalence of 93.70 % in indigenous children 1 to 5 years of age from Xingu National Park in 2001, which is much higher than the prevalence reported in Acre.
Average seroprevalence in the Northern region of Brazil (where the Amazon is located) is higher than in the rest of the country. Vitral et al. [17] found seroprevalences of 25.90 % for the Northern region as compared to a seroprevalence of 10.00 % for the Southwest region, while Clemens et al. [1] reported seroprevalences of 92.80 % and 55.70 %, respectively. In fact, seroprevalence in children 1 to 4 years of age living in Rio de Janeiro (Southeast Brazil) was reported to be 5.01 % to 27.46 % [18]. In a study in South Brazil (Curitiba), total anti-HAV seroprevalence was 3 % in children 1 to 4 years of age [19], and the seroprevalence of anti-HAV IgG in Santos was 2.50 % in daycare facilities and 5.50 % in kindergarten children [20]. These are much lower seroprevalences than those reported in Amazonian studies and lower than rates found in Rio de Janeiro; however, they were not population-based studies.
World Health Organization (WHO) reports for children 1 to 4 years of age in other areas of the world show seroprevalences lower than 5.00 % in North America, Western Europe, Australasia and high-income areas of the Asia Pacific [21]. Seroprevalence rates are between 50.00 % and 75.00 % in the Andean region; Central Latin America; West, South, and East Subsaharian Africa; and South Asia, and rates are between 15.00 % and 50.00 % in Eastern Europe and the remaining areas of Asia, Latin America, Africa, and the Middle East [21], suggesting that hepatitis A transmission is also linked to socio-economic development in the rest of the world.
One important issue in the transmission of hepatitis A is age at which children are infected and whether or not children should be vaccinated. This seems to vary according to transmission levels. In a national survey performed in Brazil in 2010, seroprevalence of 30 % was found in children 10 to 14 years of age, while in areas of intermediate prevalence, the same rate was found in children between 5 and 9 years of age [22]. Vitral et al. [17] has shown declining seroprevalence for hepatitis A virus in Brazilian capitals, probably as the result of improved sanitary conditions and water treatment. The authors discuss that these decreased levels of transmission at some areas without proper immunization could result in shifting of infection to older age strata, resulting in more symptomatic and fatal cases [17]. Modeling strategies have shown that, in areas of intermediate endemicity, the risk for acquiring hepatitis A increases until 25 years of age, while at low-transmission settings, the force of infection remains the same in all age groups [22]. In view of this recent shift in hepatitis A epidemiology, the Brazilian government has just introduced the hepatitis A vaccine into the Brazilian National Immunization Program, targeting it toward children between 12 and 23 months of age [23]. This strategy is expected to result in a 64.00 % reduction in the number of icteric cases and a 59.00 % reduction in deaths caused by hepatitis A, at a cost of 7.23 U.S. dollars per dose [24].
Positive serology for hepatitis A was associated with being of indigenous origin, having a house not located on a street, using water from a public system, and being older than 4 years of age. Brazil is a country of ethnic diversity and it is widely known that social inequities are frequently associated with ethnicity. At the same time, ethnic groups have a heterogeneous spatial distribution because of past migratory movements. Indigenous ethnicity is widespread in Brazil but concentrates in the Northern region. Caucasians predominate in the Southern and Southeastern part of the country, Blacks and people of Asian origin predominate in Southeastern Brazil, and “Pardos” (the offspring of a Caucasian and black couple) predominate in the Northeastern part of Brazil [25]. Therefore, it is common to have population-based studies with multiethnic composition. In Assis Brasil, this minority group comprised 35.3 % of the positive cases and, at the same time, this ethnic group was associated with most of the socioeconomic inequities that were evaluated (low maternal education, latrine or no toilet, lack of piped water, presence of open sewage near the house, and lack of access to mineral water).
Several studies have already shown the social vulnerability of the indigenous population in Brazil [26]. Coimbra et al. [27] report poor sanitation and living conditions for indigenous populations, which can explain why seroprevalence for hepatitis A is high. These poor sanitation conditions, which are worse in the Amazon, include very low availability of latrines inside the household (0.60 %), lack of sewage treatment in 91.00 % of the indigenous households (while 90.00 % of the non-indigenous households in Brazil do have sewage treatment), and lack of waste collection in 79.00 % of the indigenous areas. Indigenous people also face inequities regarding water treatment; less than 30.00 % of indigenous households have access to water from the public system and 40.00 % of them collect water from wells, lakes, or rivers. Pena and Heller [28] also found a great proportion of Brazilian indigenous children (between 75.00 % and 100.00 %) without access to water from the public system or without access to sanitary installations.
Recent nationwide research about health in the indigenous population identified that children in this ethnic group have much higher prevalences of anemia (66.20 %) [29] and undernutrition (40.80 %) [30] than non-indigenous children (20.90 % and 14.70 %, respectively) living in the Amazon [27]. Nunes et al. [31] showed seroprevalence of 96.20 % in indigenous children 1 to 4 years of age and 98.00 % in the general indigenous population of Altamira after an outbreak in the eastern Brazilian Amazon, which is much higher than seroprevalence for non-indigenous Amazonian children. Laffer et al. [16] also reported similar seroprevalence in indigenous tribes of Xingu (97.70 %). Bialek et al. (2004) [32] also showed a high incidence of hepatitis A cases in indigenous people in the US and Alaska, in areas where the vaccine was not fully available, confirming the vulnerability of native populations. Therefore, the indigenous ethnic group is exposed to several socioeconomic inequities, both in and outside of the Amazon, and, at the same time, present higher prevalence of several infectious diseases, most of them related to these unfavorable socioeconomic conditions [26].
In the present study, water usage from the public system was associated with positive serology for anti-HAV antibodies. It is important to note that, in the Amazon, not all water distributed by the governmental public system receives proper treatment, and our results suggest that the quality of water distributed by the municipality was not adequate. There is no specific data on water treatment for Assis Brasil, but recent data for sanitation conditions in the capital city of Rio Branco showed that only 27.00 % of all the sewage is collected and only 3.00 % of the water is treated [33]. It is possible that because of poor sanitation and lack of sewage treatment in the city, contamination of local water sources by fecal coliforms may be frequent and, eventually, the hepatitis A virus may be present in the untreated water consumed by the population. An association between other water sources (such as rivers, lakes, and streams) and a positive serology (probably due to sample size limitations) was not detected.
The quality of drinking water and water used for domestic purposes has been implicated with the transmission of hepatitis A in several other studies. Zago-Gomes et al. [34] have found decreased seroprevalence in children 4 to 14 years of age who had access to filtered water in Midwestern Brazil. Vitral et al. [17] also found association between the use of filtered water and decreased seroprevalence for hepatitis A in children less than 18 years of age in different cities in Brazil. The same association was found by Almeida et al. [18] in the city of Rio de Janeiro. A study performed between 2004 and 2005 in the Amazon detected hepatitis A viral load in 92.00 % of water samples from streams collected in the city of Manaus, which is one of the most urbanized cities in the Brazilian Amazon [35]. This result suggests the contamination of rivers and streams with untreated sewage. Several outbreaks of acute hepatitis A have been shown to be associated with contact with contaminated water [36, 37]. All of these studies demonstrated that the quality of water and how it is regularly used is a major question in hepatitis A transmission, regardless of how exposure to water of poor quality was measured.
Since the last decade, bottled water that is sold as “mineral water” or “water extracted from deep soil fountains” has been extensively commercialized in Brazil and has started to be sold in the Amazon as well. It has a higher cost than water from the public system or from wells and it is supposedly of high quality; therefore, it could act as a protective factor from contact with the hepatitis A virus. Although no statistically significant association between access to bottled water (or “mineral” water, as it is called in Brazil) and hepatitis A cases was found in this study, consumption of this type of water was spatially concentrated in areas with low seroprevalence of anti-HAV antibodies.
Some variables were associated with the presence of anti-HAV antibodies in the unadjusted analysis. Among them are variables that are proxies of socioeconomic conditions, such as maternal education, type of house floor, lack of electricity, and not owning a house. After adjustment for other factors, they were no longer statistically significant, but three of them (low maternal education, wood or ground floor, and not owning a house) had a significant spatial cluster that was superimposed on the spatial cluster of HAV cases, suggesting that these two socioeconomic inequities occur more frequently in Assis Brasil in households where HAV cases are concentrated. Ciaccia et al. [20] found an association between presence of anti-HAV antibodies in children up to 18 years of age and low maternal education in Southern Brazil, but it is possible that low maternal education was a proxy of low socioeconomic conditions in this study, as it was in Assis Brasil.
Three other variables were associated with the presence of anti-HAV antibodies in the univariate analysis and had a spatial clustering of cases. These include type of toilet, presence of piped water inside the household, and susceptibility of the household to flooding during rain. These indicate unfavorable environmental conditions that may be associated with facilitated transmission of the hepatitis A virus. Gomes et al. [38] and Ximenes et al. [39] also showed that lack of piped water supply at home was related to increased seroprevalence of anti-HAV antibodies in children and adolescents in Northeastern and Midwestern Brazil, respectively. Contact with open sewage around the house and lack of toilets or latrines have also been implicated as associated factors in other studies [18, 40]. Living in households that are not located on a street may represent an unfavorable environmental condition because public services such as sanitation, piped water, and waste collection may not be available.
This study has two limitations. Seroprevalence was calculated using total anti-HAV antibodies, and the infection may have occurred in the past while variables are being measured in the present. However, because the age group is 1 to 4 years of age, it is probable that this had little effect in most of the variables measured, which are not expected to change much over a short period of time. The children that were not tested were younger and living in more favorable conditions than those tested and, therefore, it is possible that the prevalence of children with detectable antibodies against HAV was slightly overestimated and the size of the association between the mentioned variables and seroprevalence was overestimated as well. However, these limitations do not affect the overall quality of the study.