VRE infection is a growing problem in specific groups of patients. However there is no data of VRE colonization prevalence in kidney transplant patients. Our study disclosed an unexpected high rate of VRE fecal colonization in such patients similar in the 3 groups of patients, in different pos-transplantation periods. This high rate cannot be compared to a healthy Brazilian population, since no data is currently available. On the other hand, very similar rates were observed in Brazilian risk groups [8, 11].
In group 1 (less than 30 days after transplantation), fecal VRE carriage probably represented colonization within the dialysis setting. In this group, we excluded from analysis positive specimens that were collected more than 7 days apart because colonization could be associated with factors related to hospital admission, such as hospital transmission. In a simultaneous Brazilian study of 320 patients from an outpatient dialysis program, a prevalence rate of fecal VRE colonization of 14.4% was observed [8], very similar to overall rate we observed in transplant patients.
We found VRE prevalence rates of 15.1% in group 2 (1 to 6 months after transplantation) and 12.4% in group 3 (more than 6 months after transplantation), which are very similar to group 1 rates. This shows that the risk factors related to transplantation, such as the net state of immunosuppression, cumulative use of antimicrobial drugs and longer hospitalization (groups 2 and 3) were not related to increased VRE prevalence over time. The study design, however, did not allow us to evaluate whether VRE colonization was persisting or whether acquisition from outside the hospital was occurring. If the patients had been monitored using surveillance cultures during this six-month period, we would have been able to affirm with certainty whether colonization was persisting or not. On the other hand, it is possible that colonization persists over time, as has been described by others [9] and persistence may have been amplified as a consequence of the use of antimicrobial drugs or the net state of immunosuppression.
Our rates of fecal colonization were as high as those found in surveillance studies in Intensive Care Unit patients. Fridkin et al. [10], in a prospective study including 126 adult ICU patients in 60 American hospitals between January 1996 and July 1999, found an average prevalence rate of 10%. A similar rate has been disclosed in a single center Brazilian ICU study (14.5%) [11]. Such similar rates may be explained by the presence of similar risk factors for VRE acquisition, such as antimicrobial use, frequent and prolonged hospitalization and severity of underlying diseases.
Fifty percent of the VRE positive patients were colonized by faecalis/faecium species of enterococci. E. gallinarum is a species with intrinsic resistance to vancomycin and seems to be very frequently found in Brazilian studies, in contrast with other studies, and contributed to 28.9% of VRE positive samples in this study. Barbosa et al. [8] studying dialysis patients, observed that 57.1% of the VRE isolates were E. gallinarum and 10.7% were E. casseliflavus. Thus, our transplant patients seem to have more faecalis/faecium species of enterococci than patients on dialysis (50% vs. 28.6%). Camargo et al. [11], in a Brazilian ICU, found that 84% of VRE species recovered from fecal specimens of critical patients were E. gallinarum. These findings contrast with clinical disease due to Enterococci, since it is estimated that 80–90% of the human enterococcal infections are caused by E. faecalis, 10–15% by E. faecium and less than 5% by other species [12]. On the other hand, E. casseliflavus and E. gallinarum have recently been reported as causative agents of clinical disease [13, 14]. Reid et al. [15] recently described 20 cases of bacteremia caused by E. gallinarum or E. casseliflavus/flavescens, which were observed in the Mayo Clinic between 1992 and 1998. It is not possible to affirm that this is a tendency and these unusual agents are becoming emerging pathogens in context of human disease.
Other studies have disclosed hemodialysis as an independent risk factor for VRE colonization, including an evaluation in our own dialysis facility [8, 16] In fact, the first cases of VRE were documented in hemodialysis patients and an increasing prevalence of VRE colonization has been reported by Tokars et al (11–34%) in American hemodialysis centers between 1995 and 1999 [17]. Whether this reflects transmission within the dialysis facilities or intrinsic patient conditions has yet to be determined. Although CAPD was a risk factor for VRE colonization in group 3 this finding should be interpreted with great caution since only 3 patients from this group were on CAPD at the time of transplantation and the present study design differs from those that addressed the issue of dialysis and VRE colonization.
Concerning the use of post-transplantation vancomycin, it has been documented that there is a direct increase in VRE prevalence, not only in relation to dialysis but also in relation to transplantation [18, 19]. Previous vancomycin use is a known risk factor for VRE colonization and ICU patients are particularly at risk. Recently, in an analysis of the association between VRE and previous use of antimicrobial drugs, Fridkin et al. [10] found a statistically significant association between VRE colonization and previous use of vancomycin among 126 adult ICUs in 60 American hospitals.
In our study, previous use of vancomycin was an independent risk factor for VRE colonization for Group 3 patients. In Group 2, out of the 73 patients studied, only two of them had received vancomycin and only one of these was VRE-positive (p = 0.28). In group 3, nine patients out of 105 received vancomycin. Association between vancomycin use and VRE colonization in this group may reflect the cumulative use of vancomycin, since the patients were followed for a longer period of time. Restriction of vancomycin use in kidney transplant patients has the clear advantage of preventing long term VRE fecal colonization.
More intense immunosuppression is clearly linked with higher rates of infection, especially with the use of high steroid doses for rejection treatment and anti-lymphocyte preparations [20, 21]. Only one study showed a clear relationship between tacrolimus use and VRE colonization in a mixed group of infants with end stage renal disease [22]. We have not found an association between presumed more intense immunosuppression and VRE colonization, including variables such as CMV infection, pulses of methyl-prednisolone, OKT3 and MMF use. The net state of immunosuppression seems to play a role in VRE colonization, since higher rates are found in selected groups of immune impaired patients, mainly ICU patients. However, whether immune suppression is a risk factor itself or a surrogate marker for other risk factors remains to be determined. It is our impression that more intense immunosuppression among kidney transplant patients does not play a central role in VRE colonization.
Although there is a strong correlation between colonization and infection [23], during the study period we did not observe any case of VRE infection among the studied population. This must be explained by the fact that most patients were colonized in the outpatient (or were discharged shortly after colonization detection) setting where other risk factors commonly associated with VRE disease were not present.
This study has one important limitation. Two stool cultures were planned for all patients; however, this goal was achieved for 55 % of patients only although all efforts and infrastructure for patient access to collection sites were attempted were provided. This probably resulted in the disclosure of an underestimated colonization rate considering that 24 % of all positive patients had the first specimen negative and the second positive.