Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD: Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med. 1998, 338: 423-428. 10.1056/NEJM199802123380703.
Article
CAS
PubMed
Google Scholar
Woodman CB, Collins S, Winter H, Bailey A, Ellis J, Prior P, Yates M, Rollason TP, Young LS: Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet. 2001, 357: 1831-1836. 10.1016/S0140-6736(00)04956-4.
Article
CAS
PubMed
Google Scholar
Vinther J, Norrild B: Clearance of cervical human papillomavirus infections. Int J Cancer. 2003, 104: 255-256. 10.1002/ijc.10922.
Article
CAS
PubMed
Google Scholar
Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ: Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003, 348: 518-527. 10.1056/NEJMoa021641.
Article
PubMed
Google Scholar
Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV: The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002, 55: 244-265.
Article
CAS
PubMed
PubMed Central
Google Scholar
zur Hausen H: Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000, 92: 690-698. 10.1093/jnci/92.9.690.
Article
CAS
PubMed
Google Scholar
Chien WM, Noya F, H.M., Broker TR, Chow LT: Alternative fates of keratinocytes transduced by human papillomavirus type 18 E7 during squamous differentiation. J Virol. 2002, 76: 2964-2972. 10.1128/JVI.76.6.2964-2972.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurray HR, Nguyen D, Westbrook TF, McCance DJ: Biology of human papillomaviruses. Int J Exp Pathol. 2001, 82: 15-33. 10.1046/j.1365-2613.2001.00177.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, Hausen HZ: Structure and Transcription of Human Papillomavirus Sequences in Cervical-Carcinoma Cells. Nature. 1985, 314: 111-114. 10.1038/314111a0.
Article
CAS
PubMed
Google Scholar
Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H: A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984, 3: 1151-1157.
CAS
PubMed
PubMed Central
Google Scholar
Yee C, Krishnanhewlett I, Baker CC, Schlegel R, Howley PM: Presence and Expression of Human Papillomavirus Sequences in Human Cervical-Carcinoma Cell-Lines. American Journal of Pathology. 1985, 119: 361-366.
CAS
PubMed
PubMed Central
Google Scholar
Lehn H, Villa LL, Marziona F, Hilgarth M, Hillemans HG, Sauer G: Physical state and biological activity of human papillomavirus genomes in precancerous lesions of the female genital tract. J Gen Virol. 1988, 69 ( Pt 1): 187-196.
Article
CAS
Google Scholar
Ziegert C, Wentzensen N, Vinokurova S, Kisseljov F, Einenkel J, Hoeckel M, von Knebel DM: A comprehensive analysis of HPV integration loci in anogenital lesions combining transcript and genome-based amplification techniques. Oncogene. 2003, 22: 3977-3984. 10.1038/sj.onc.1206629.
Article
CAS
PubMed
Google Scholar
Wentzensen N, Ridder R, Klaes R, Vinokurova S, Schaefer U, Doeberitz MK: Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene. 2002, 21: 419-426. 10.1038/sj.onc.1205104.
Article
CAS
PubMed
Google Scholar
Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF, Smith DI: The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet. 2005, 158: 27-34. 10.1016/j.cancergencyto.2004.08.021.
Article
CAS
PubMed
Google Scholar
Jeon S, Allen-Hoffmann BL, Lambert PF: Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995, 69: 2989-2997.
CAS
PubMed
PubMed Central
Google Scholar
Jeon S, Lambert PF: Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995, 92: 1654-1658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernard BA, Bailly C, Lenoir MC, Darmon M, Thierry F, Yaniv M: The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J Virol. 1989, 63: 4317-4324.
CAS
PubMed
PubMed Central
Google Scholar
Tan SH, Gloss B, Bernard HU: During negative regulation of the human papillomavirus-16 E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element. Nucleic Acids Res. 1992, 20: 251-256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demeret C, Garcia-Carranca A, Thierry F: Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene. 2003, 22: 168-175. 10.1038/sj.onc.1206108.
Article
CAS
PubMed
Google Scholar
Webster K, Parish J, Pandya M, Stern PL, Clarke AR, Gaston K: The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J Biol Chem. 2000, 275: 87-94. 10.1074/jbc.275.1.87.
Article
CAS
PubMed
Google Scholar
de Jong A, van der Burg SH, Kwappenberg KM, van der Hulst JM, Franken KL, Geluk A, van Meijgaarden KE, Drijfhout JW, Kenter G, Vermeij P, Melief CJ, Offringa R: Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res. 2002, 62: 472-479.
CAS
PubMed
Google Scholar
Stunkel W, Huang Z, Tan SH, O'Connor MJ, Bernard HU: Nuclear matrix attachment regions of human papillomavirus type 16 repress or activate the E6 promoter, depending on the physical state of the viral DNA. J Virol. 2000, 74: 2489-2501. 10.1128/JVI.74.6.2489-2501.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terhune SS, Milcarek C, Laimins LA: Regulation of human papillomavirus type 31 polyadenylation during the differentiation-dependent life cycle. J Virol. 1999, 73: 7185-7192.
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Oberg D, Rush M, Fay J, Lambkin H, Schwartz S: A 57-nucleotide upstream early polyadenylation element in human papillomavirus type 16 interacts with hFip1, CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein. J Virol. 2005, 79: 4270-4288. 10.1128/JVI.79.7.4270-4288.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi FM, Guicherit OM, Spicher A, Kringstein AM, Fatyol K, Blakely BT, Blau HM: Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet. 1998, 20: 389-393. 10.1038/3871.
Article
CAS
PubMed
Google Scholar
Spicher A, Guicherit OM, Duret L, Aslanian A, Sanjines EM, Denko NC, Giaccia AJ, Blau HM: Highly conserved RNA sequences that are sensors of environmental stress. Mol Cell Biol. 1998, 18: 7371-7382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Tan SH, Bartsch D, Schwarz E, Bernard HU: Nuclear matrix attachment regions of human papillomavirus type 16 point toward conservation of these genomic elements in all genital papillomaviruses. J Virol. 1998, 72: 3610-3622.
CAS
PubMed
PubMed Central
Google Scholar
Furth PA, Choe WT, Rex JH, Byrne JC, Baker CC: Sequences homologous to 5' splice sites are required for the inhibitory activity of papillomavirus late 3' untranslated regions. Mol Cell Biol. 1994, 14: 5278-5289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collier B, Oberg D, Zhao X, Schwartz S: Specific inactivation of inhibitory sequences in the 5' end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J Virol. 2002, 76: 2739-2752. 10.1128/JVI.76.6.2739-2752.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koffa MD, Graham SV, Takagaki Y, Manley JL, Clements JB: The human papillomavirus type 16 negative regulatory RNA element interacts with three proteins that act at different posttranscriptional levels. Proc Natl Acad Sci U S A. 2000, 97: 4677-4682. 10.1073/pnas.070049097.
Article
CAS
PubMed
PubMed Central
Google Scholar
McPhillips MG, Veerapraditsin T, Cumming SA, Karali D, Milligan SG, Boner W, Morgan IM, Graham SV: SF2/ASF binds the human papillomavirus type 16 late RNA control element and is regulated during differentiation of virus-infected epithelial cells. J Virol. 2004, 78: 10598-10605. 10.1128/JVI.78.19.10598-10605.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CY, Shyu AB: AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995, 20: 465-470. 10.1016/S0968-0004(00)89102-1.
Article
CAS
PubMed
Google Scholar
Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M, Darnell JE: Decay rates of human mRNAs: Correlation with functional characteristics and sequence attributes. Genome Research. 2003, 13: 1863-1872. 10.1101/gr.997703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Tan W, Sokolowski M, Schwartz S: Identification of nuclear and cytoplasmic proteins that interact specifically with an AU-rich, cis-acting inhibitory sequence in the 3' untranslated region of human papillomavirus type 1 late mRNAs. J Virol. 1996, 70: 3659-3667.
CAS
PubMed
PubMed Central
Google Scholar
Durst M, Glitz D, Schneider A, zur Hausen H: Human papillomavirus type 16 (HPV 16) gene expression and DNA replication in cervical neoplasia: analysis by in situ hybridization. Virology. 1992, 189: 132-140. 10.1016/0042-6822(92)90688-L.
Article
CAS
PubMed
Google Scholar
Stoler MH, Rhodes CR, Whitbeck A, Wolinsky SM, Chow LT, Broker TR: Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol. 1992, 23: 117-128. 10.1016/0046-8177(92)90232-R.
Article
CAS
PubMed
Google Scholar
Collier B, Goobar-Larsson L, Sokolowski M, Schwartz S: Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)-binding proteins 1 and 2. J Biol Chem. 1998, 273: 22648-22656. 10.1074/jbc.273.35.22648.
Article
CAS
PubMed
Google Scholar
Sokolowski M, Tan W, Jellne M, Schwartz S: mRNA instability elements in the human papillomavirus type 16 L2 coding region. J Virol. 1998, 72: 1504-1515.
CAS
PubMed
PubMed Central
Google Scholar