Skip to main content

Table 4 Key findings from studies investigating Tat-TAR binding affinities

From: HIV-1 Tat amino acid residues that influence Tat-TAR binding affinity: a scoping review

Reference

Binding technique

Amino acids (Being investigated)

Mutation introduced

In silico, In vitro/In vivo

Key findings

[86]

Surface Plasmon Resonance (SPR)

Tat peptides

Wild type: RVRTRKGRRIRIPP

Tat peptide 1 RVRTKKGRRIRIPP

Tat peptide 1: R5K

In vitro

1. Dissociation constant (Kd) values of Tat-TAR binding:

Tat wild type = 0.2 × 10−7 M

Tat peptide 1 = 6.7 × 10−7 M

2. R5K mutation in Tat peptide 1 can destabilize Tat-TAR interaction, reducing the rate of Tat release from TAR, decreasing overall affinity of Tat for TAR

3. When TAR binds to Tat peptide 1 the Kd value increased significantly (+ 15-fold) compared to the Tat wild type

[69]

Electrophoretic mobility shift assay (EMSA)

Tat peptides (47–58)

Tat wild type: YGRKKRRQRRRP

Tat peptide 1: YGRKKARQRRRP

Tat peptide 2: YGRKKRAQRRRP

Tat peptide 3: YGRKKRRARRRP

Tat peptide 4: YGRKKRRQARRP

Tat peptide 5: YGRKKRRQRARP

Tat peptide 6: YGRKKAAQRRRP

Tat peptide 7: YGRKKRRQAARP

Tat peptide 8: YGRKKRRQKKRP

Tat peptide 9: YGRKKKKQRRRP

Tat peptide 10: YGRKKARQARRP

Tat peptide 11: YGRKKARQRARP

Tat peptide 12: YGRKKRAQARRP

Tat peptide 13: YGRRRRAQRARP

Tat peptide 14: FITKALGISYGRKKRRQRRRP

Tat peptide 15: SGQPPRRRQRRKKRG

Tat peptide 16: YRKRRQRRGKRP

Tat peptide 17: YRKRGRQRRKRP

Tat peptide 1: R52A

Tat peptide 2: R53A

Tat peptide 3: Q54A

Tat peptide 4: R55A

Tat peptide 5: R56A

Tat peptide 6: R52AR53A

Tat peptide 7: R55AR56A

Tat peptide 8: R55KR56K

Tat peptide 9: R52KR53K

Tat peptide 10: R52AR55A

Tat peptide 11: R52AR56A

Tat peptide 12: R53AR55A

Tat peptide 13: R53AR56A

Tat peptide 14: Addition of N-terminal “FITKALGIS”

Tat peptide 15: Addition of C-terminal “SGQ”

Tat peptide 16: G48R, K50R, R52Q, Q54R, R55K, R56K, P58G

Tat peptide 17: G48R, K50R, K51G, R53Q, Q54R, R56K

In vitro

1. Kd values of Tat-TAR binding:

Tat wild type = 6 X 10−9 M

2. When single mutations were introduced into Tat, the following Kd values were observed:

Tat peptide 1 = 10 × 10−9 M

Tat peptide 2 = 12 X 10−9 M

Tat peptide 3 = 5 X 10−9 M

Tat peptide 4 = 12 × 10−9 M

Tat peptide 5 = 12 × 10−9 M

3. When Double mutations were introduced in Tat, the following Kd values were observed:

Tat peptide 8 = 4 × 10−9 M

Tat peptide 9 = 13 X 10−9 M

Tat peptide 6, Tat peptide 7,

Tat peptide 10, Tat peptide 11, Tat peptide 12, Tat peptide 13 = Kd =  > 100 X 10−9 M

4. The Tat mutation Q54A in Tat peptide 3 had no significant effect on Tat-TAR binding

5. The Tat peptide 14 had a binding affinity of 6 × 10−9 M to TAR whereas the Tat peptide

15 had a binding affinity of 3 × 10−9 M

Tat peptide 16 = 4 × 10−9 M

Tat peptide 17 = 3 × 10−9 M

6. The Arginine (R)-rich region 47–58 of the Tat protein binds to 3’ nucleotide bulge of TAR-RNA

7. Substituting pairs of positions R52AR53A (Tat peptide 6), R55AR56A (Tat peptide 7), R52AR55A (Tat peptide 10), R52AR56A (Tat peptide 11), R53AR55A (Tat peptide 12), R53AR56A (Tat peptide 13) reduced binding affinity to TAR > 20 fold

8. Substituting a single R on Tat positions R52A (Tat peptide 1), R53A (Tat peptide 2), R55A (Tat peptide 4), R56A (Tat peptide 5) reduced binding to TAR by twofold

9. Therefore, double substitutions of R with A in the 47–58 region resulted in the highest Kd values, showing the lowest Tat-TAR binding affinity

10. Multiple double substitutions were made on

Tat peptide 16 – G48R, K50R, R52Q, Q54R, R55K, R56K, P58G

Tat peptide 17- G48R, K50R, K51G, R53Q, Q54R, R56K

Tat peptides 15, 16, 17 had lower Kd values compared to Tat wild type

[76]

Fluorescence resonance energy transfer (FRET)

Tat peptides (47–58 and 38–72)

Tat 38–72: FTKKALGISYGRKKRRQRRRAPEDSQTHQVSLPKQ

Tat peptide 1: N-terminus rh-Tat YGRKKRRQRRRP

Tat peptide 2: N-terminus rh-Tat FTKKALGISYGRKKRRQRRRAPEDSQTHQVSLPK

Tat peptide 3: FTKKALGISYGRKKRRQRRRAPEDSQTHQVSLPKQC C terminus rh-Tat (38–72)

Comparing Tat fragments/regions

In vitro

1. Kd values of binding to TAR RNA

2. Tat peptide 1 = 2.1 × 10–9 (± 0.2 × 10–10) M;

3. Tat peptide 2 = Rh-Tat (38–72) = 1.0 × 10–9(± 0.1 × 10–10) M

4. Tat peptide 3 = Tat (38–72) C-Rh = 3.1 × 10–10 (± 0.2 × 10–10) M, and

5. The reason for Tat peptides consisting of 38–72 having higher binding affinity is because the amino acids from the core region makes the most contacts with TAR RNA and stabilize the structure of the TAR-Tat complex to enhance the affinity and specificity of Tat for TAR

6. The reason for the Kd value of Tat peptide 2 being threefold greater than Tat peptide 3 was that in Tat peptide 3, rhodamine moiety is relatively far from the basic binding region of Tat and will not influence binding affinity significantly

[81]

EMSA and

SPR

Tat peptide 1 Tat full length (1–86)

EPVDPRLEPWKHPGSQPKTACTTCYCKKCCFHCQVCFTTKALGISYGRKKRRQRRRPPQGSQTHQVSLSKQPTSQPRGDPTGPKE

Tat peptide 2 Biot-Tat (1–86): EPVDPRLEPWKHPGSQPKTACTTCYCKKCCFHCQVCFTTKALGISYGRKKRRQRRRPPQGSQTHQVSLSKQPTSQPRGDPTGPKE

Tat peptide 3 Biot-Tat (30–86): CFHCQVCFTTKALGISYGRKKRRQRRRPPQGSQTHQVSLSKQPTSQPRGDPTGPKE

Comparing Tat fragments/regions

In vitro/in silico

1. Tat peptide 3 (30–86) did not bind to TAR

2. This suggested that if the N terminus of Tat is deleted, no binding to TAR will take place

3. Tat peptide 2 (1–86) bound to TAR at a Kd of 1.85 × 10−9 M

4. Tat peptide 1 (1–86) bound to TAR at a Kd of 6.71 × 10−9 M

[36]

EMSA and dual-label filter binding assay

Full length Tat, HIV-1BRU (1–86)

Tat peptides (32–86):

Tat peptide 1 (37–72): CFTTKALGISYGRKKRRQRRRPPQGSQTHQVSLSKQ

Tat peptide 2 (43–72): LGISYGRKKRRQRRRPPQGSQTHQVSLSKQ

Tat peptide 3 (48–72): GRKKRRQRRRPPQGSQTHQVSLSKQ

Tat peptide 4 (32- 72): FHCQVCFTTKALGISYGRKKRRQRRRPPQGSQTHQVSLSKQ

Tat peptide 5 (49–86): RKKRRQRRRPPQGSQTHQVSLSKQPTSQSRGDPTGPKE

Tat peptide 6 (32–62): FHCQVCFTTKALGISYGRKKRRQRRRPPQGS

Comparing Tat fragments/regions

In vitro

1. Kd values for full length Tat peptides to TAR were as follow Full length Tat: 6.7 × 10−9 M, Tat peptide 1: 8.4 × 10–8 (± 1.3 × 10–8) M, Tat peptide 2: 7.6 × 10–8 (± 8 × 10–9) M, Tat peptide 3: 3.0 × 10–7 (± 2.0 × 10–8) M, Tat peptide 4: 2.1 × 10–7 (± 2.1 × 10–8) M, Tat peptide 5: 5.3 × 10–8 (± 2 × 10–9) M

2. No findings were reported for Tat peptide 6

3. Tat affinity and specificity for TAR RNA are increased when core region (40–48) was present in the peptide, with K41 playing a key role in TAR recognition

4. Peptides which contain only the basic region & C terminal bind to TAR RNA weakly and non-specifically

[72]

Electron paramagnetic resonance

spectroscopy (EPR)

Tat peptides (47–57)

Tat wild type: YGRKKRRQRRR

Tat peptide 1 YKKKKRKKKKA

Tat peptide 1: G48K, R49K, R52K, R53K, Q54K, R55K, R56K, R57A

In vitro/In silico

1. Kd values for Tat peptides binding TAR were as follow: Tat wild type -TAR = 4.0 × 10–7 M and Tat peptide 1-TAR = 1.5 × 10–6 M

2. The Presence of R52 in both peptides has similar binding affinity to TAR RNA

3. This suggest that other amino acids in wild type peptides account for difference in binding affinity and the development of a more rigid complexes between the wild type and peptide 1

[84]

EMSA

Anisotropy assay

Tat peptides (47–57)

Tat wild type peptide = YGRKKRRQRRR

Tat peptide 1 = YGKKKKKQKKK

Tat peptide 1: R49K, R52K, R53K, R55K, R56K, R57K

In vitro

1. Kd values for Tat-TAR binding was as follow: Tat wild type peptide = 2.1 × 10–9 (± 8 × 10–10) M, Tat peptide 1 = 3.2 × 10–8 (± 4 × 10–9) M

2. Tat affinity for RNA depends on side chain of R in basic region – and cationic side chains providing a polyelectrolyte-like affinity

3. A cluster of cationic residues may also provide a polyelectrolyte affinity of Tat for TAR

[83]

Gel electrophoresis

Circular dichroism (CD)

Tat peptide (49–57)

Tat wild type—RKKRRQRRR

Tat peptide 1-KKKRKQKKK

Tat peptide 2- KKKRKKKKK

Tat peptide 3- KKKKRQKKK

Tat peptide 4- KKKRRQKKK

Tat peptide 5—KKKRRKKKK

Tat peptide 6- KKKKKQRKK

Tat peptide 7- KKKKKQKRK

Tat peptide 1 = R49K, R53K, R55K, R56K, R57K

Tat peptide 2 = R49K, R53K, Q54K, R55K, R56K, R57K

Tat peptide 3 = R49K, R52K, R54K, R55K, R56K, R57K

Tat peptide 4 = R49K, R55K, R56K, R57K

Tat peptide 5 = R49K, Q54K, R55K, R56K, R57K

Tat peptide 6 = R49K, R52K, R53K, R56K, R57K

Tat peptide 7 = R49K, R52K, R53K, R55K, R57K

In vitro

1. Kd values for Tat-TAR binding were as follow: Tat wild type = 4 × 10−10 M, Tat peptide 1 = 9 × 10−10 M, Tat peptide 2 = 7 × 10−10 M, Tat peptide 3 = 3.5 × 10−9 M, Tat peptide 4 = 5 × 10−10 M, Tat peptide 5 = 1.8 × 10−9 M, Tat peptide 6 =  > 5 × 10−8 M and Tat peptide 7 =  > 1 × 10−7 M

2. Therefore, Tat wild type had the highest binding affinity

3. Tat peptide 7 had the lowest binding affinity and this may be as a result of the absence of arginine in this amino acid sequence

[82]

Fluorescence resonance energy transfer (FRET)

MALDI-TOFMS

Fluorescence binding assay

Tat peptides (46–61)

Tat wild type: 46AAARKKRRQRRRAAA60

Tat peptide 1: 46AAARKKRRARRRAAA61

Tat peptide 2: 46AAAAKKRRARRRAAA61

Tat peptide 3: 46AAARAARRARRRAAA61

Tat peptide 4: 46AAAAARRRRRAAAAAA61

Tat peptide 5: 46AAAAARRARRRAAAAA61

Tat peptide 6: 46AAAAARRARRAAAAAA61

Tat peptide 7: 46AAAAARRARAAAAAAA61

Tat peptide 1: 46AAAAARRARAAAAAAA61

Tat peptide 2: 46AAAAARRARRAAAAAA61

Tat peptide 3: 46AAAAARRARRRAAAAA61

Tat peptide 4: 46AAAAARRRRRAAAAAA61

Tat peptide 5: 46AAARAARRARRRAAA61

Tat peptide 6: 46AAAAKKRRARRRAAA61

Tat peptide 7: 46AAARKKRRARRRAAA61

Tat peptides

Tat peptide 1—Q54A

Tat peptide 2- R49A, Q54A

Tat peptide 3—K50A, K51A, Q54A

Tat peptide 4—R49A, K50A, K51A, Q54A,

Tat peptide 5 – R49A, K50A, Q54A, K51R, R53A, Q54R, R57A

Tat peptide 6—R49A K50A, R51R, R53A, Q54R. R56A, R 57A

Tat peptide 7 – R49A, K50A, K51R, R53A, Q54R

R55A, R56A, R57A

In vitro

1. Kd Values between Tat peptides and TAR were as follow:

Tat wild type: 7 × 10−8 M;

Tat peptide 1 (Kd = 8 × 10−8 M);

Tat peptide 2 (Kd = 1.7 × 10−7 M);

Tat peptide 3 (Kd = 2.9 × 10−6 M);

Tat peptide 4 (Kd = 1.8 × 10−5 M);

Tat peptide 5 (Kd = 6.6 × 10−5 M);

Tat peptide 6 = No binding,

Tat peptide 7 = No binding,

2. The Tat wild type peptide with Kd 7 × 10−8 M had the highest affinity for TAR

[70]

Nuclear Magnetic Resonance Spectroscopy

(NMR)

Fluorescence spectroscopy

Tat peptide (32–72)

Tat wild type YHCQVCFITKGLGISYGRKKRRQRRRPSQGGQTHQDPIPKQ

Tat peptide 1: YHSQVWFITKGLGISYGRKKRRQRRRPSQGGQTHQDPIPKQ

Tat peptide 1: C34S, C37W

In vitro

1. Kd values of Tat wild type -TAR and Tat peptide 1 – TAR was as follows

2. Tat peptide 1 bound to TAR RNA was 7.16 × 10−8 M and Tat wild type – TAR binding = 5.75 × 10−8 M

3. By comparing Kd values of Tat wild type and Tat peptide 1 the introduced mutations, C34S and C37W in Tat peptide 1 indicate that C34 and C37 in core region are not involved in high affinity to HIV-1 TAR RNA

[71]

Absorption spectroscopy

Gel shift assays

CD Spectroscopy

Tat peptides (49–55):

Tat wild type: KKKRKKKK

Tat peptide 1: AKKRKKKK

Tat peptide 2: KAKKRKKK

Tat peptide 3: KKARKKK

Tat peptide 4: KKKRAKK

Tat peptide 5: KKKRKAK

Tat peptide 6: KKKRKKA

Tat peptide 1: K49A

Tat peptide 2: K50A

Tat peptide 3: K51A

Tat peptide 4: K53A

Tat peptide 5: K54A

Tat peptide 6: K56A

In vitro

1. Kd values for Tat binding TAR were as follow: Tat wild type = 2 × 10−7 M, Tat peptide 1 = 4 × 10−6 M, Tat peptide 2 = 2 × 10–5 M, Tat peptide 3 = 4 × 10−6 M, Tat peptide 4 = 4 × 10−6 M, Tat peptide 5 = 2 × 10–5 and Tat peptide 6 = 4 × 10−6 M

2. The specificity of a Tat amino acid sequence in binding to TAR is mediated by the R52 located in the middle of basic region and surrounding positive charges to R52 overall binding affinity to TAR

[77]

Gel shift assay

CD Spectroscopy,

SPR

Tat peptides

Tat peptide wild type

YGRKKRRQRRRP

Tat peptide 1

YGRKKRRQRRRPPQGSQT

Tat peptide 2

YGRKKRRQRRRPPQGSQTHR

Comparing Tat fragments/regions

In vitro

1. The binding of Tat peptides to TAR were as follow: Tat peptide wild type -TAR = 2.6 × 10–6 M, Tat peptide 1-TAR = 8.7 × 10–7 M, Tat peptide 2-TAR = 9.3 × 10–7 M,

2. The kinetic stabilities of Tat peptide 1- TAR and Tat peptide 2 -TAR complexes cannot be differentiated: it may be due to minimal difference between the two peptides being only two (Q and H) amino acids on the C terminal region of the Tat peptide 2 Increased kinetic stability in Tat peptides 1 and 2 – TAR complexes indicates that other amino acid residues outside the basic region contribute to overall binding affinity and kinetic stability of the Tat-TAR complex

[78]

Gel retardation assays

High performance liquid chromatography (HPLC)

Tat peptides:

Tat peptide 1: RKKRRQRRRPPQGS

Tat peptide 2: RKKRRQRRRPPQGSQTHQVSLSKQ

Tat peptide 3: RKKRRQRRRPPQGSQTHQVSLSKQPTSQPRGDPTGPKE

Comparing Tat fragments/regions

In vitro

1. Tat peptide 3 – TAR binding was approximately 5 × 10−9 M and Tat peptide 2-TAR binding approximately 5 × 10−9 M

2. Tat 1- TAR—dissociation occurs very fast and could not be measured

3. TAR sequence and structure can contribute to specific recognition by -COOH terminal domain of Tat

4. Residue -COOH terminal to the basic region are not necessary for binding to TAR but their presence contributes to the kinetic stability of Tat-TAR complex

5. Possible hydrogen bond acceptors on Q54 sidechain and peptide backbones on Tat peptide promote a more specific interaction with TAR RNA