Skip to main content

An automated system based on 2 d empirical mode decomposition and k-means clustering for classification of Plasmodium species in thin blood smear images

Background

In order to control malarial infection, specific anti-malarial drug for the corresponding Plasmodium species must be administered. The objective of this work is to develop a system for classification of Plasmodium species in thin blood smear images.

Methods

In this work, thin blood smear sub images (n=87) of different Plasmodium species were acquired from the Parasite Image Library of the Centers for Disease Control and Prevention Database [http://www.dpd.cdc.gov/dpdx/HTML/ImageLibrary/Malaria_il.htm]. The images were subjected to 2 d Empirical Mode Decomposition and four features namely the mean value of first Intrinsic Mode Function (IMF-1), IMF-2, IMF-3 and residue, were extracted. The significance of the extracted features was analyzed using ANOVA test. Further, the k-means clustering algorithm was used to classify the different Plasmodium species using the significant features.

Results

It was found that the features namely the mean of IMF-1 and residue are statistically significant (p<0.001) and the developed classification system was able to classify the Plasmodium vivax images with a high accuracy of 100%. Further, the Plasmodium malariae images were classified with an accuracy of 83.33%. However, the developed classifier showed lower accuracy in classification of Plasmodium falciparum and Plasmodium ovale images.

Conclusion

Results demonstrate that the developed system is highly efficient in classification of P. vivax and P. malariae. This study appears to be of high clinical relevance since the automated classification of malaria parasite is useful for mass screening and drug selection for treatment of the infection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Kamalanand.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver (https://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manickavasagam, K., Sutha, S. & Kamalanand, K. An automated system based on 2 d empirical mode decomposition and k-means clustering for classification of Plasmodium species in thin blood smear images. BMC Infect Dis 14, P13 (2014). https://doi.org/10.1186/1471-2334-14-S3-P13

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/1471-2334-14-S3-P13

Keywords

  • Malaria
  • Plasmodium
  • Plasmodium Falciparum
  • Empirical Mode Decomposition
  • Plasmodium Species