Skip to main content


Figure 1 | BMC Infectious Diseases

Figure 1

From: Host biomarkers distinguish dengue from leptospirosis in Colombia: a case–control study

Figure 1

Integrating Clinical and Laboratory Data with Biomarker Data Improves Discrimination of Dengue Fever and Leptospirosis. Logistic regression analysis was used to generate two models to discriminate between dengue fever and leptospirosis and the predicted probabilities from those models were plotted using ROC curve analysis. The first model used clinical and laboratory data (clinical model: age, sex, height, duration of illness, leukopenia, rash, dizziness) and had good discriminatory performance with a c-index (equivalent to the AUC) of 0.86 (95% CI: 0.79-0.91). By adding in the biomarker data, we generated a model with excellent discriminatory ability and a c-index of 0.979 (95% CI: 0.94-0.996). The biomarker model (clinical model with IL-18BP, sEng) had a c-index that was statistically higher than that of the clinical model (p = 0.0003).

Back to article page