Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Microarray of surface-exposed proteins of rickettsia heilongjiangensisfor serodiagnosis of Far-eastern spotted fever

  • Yong Qi1,
  • Wenping Gong1,
  • Xiaolu Xiong1,
  • Jiafu Jiang1,
  • Yawei Wang1,
  • Jun Jiao1,
  • Changsong Duan1 and
  • Bohai Wen1Email author
Contributed equally
BMC Infectious Diseases201414:332

DOI: 10.1186/1471-2334-14-332

Received: 14 April 2014

Accepted: 13 June 2014

Published: 17 June 2014

Abstract

Background

Far-eastern spotted fever (FESF) is an important emerging infectious disease in Northeast Asia. The laboratory diagnosis of FESF in hospitals is mainly based on serological methods. However, these methods need to cultivate rickettsial cells as diagnostic antigens, which is both burdensome and dangerous.

Methods

Eleven surface-exposed proteins (SEPs) were identified in our previous study and their recombinant proteins (rSEPs) fabricated on a microarray were serologically analyzed with seventeen paired sera from patients suffered from FESF in this study.

Results

All the rSEPs showed sensitivities of between 53% and 82% to acute-phase sera and of between 65% and 82% to convalescent-phase sera, and all the rSEPs except rRplA showed specificities of between 80% and 95%. The combination assay of two, three, or four of the four rSEPs (rOmpA-2, rOmpB-3, rRpsB, and rSdhB) showed better sensitivities of between 76% and 94% to the acute-phase sera or between 82% and 100% to the convalescent-phase sera and acceptable specificities of between 75% and 90%.

Conclusions

Our results suggest that the four rSEPs are more likely candidate antigens for serological diagnosis of FESF.

Keywords

Far-eastern spotted fever Rickettsia heilongjiangensis Protein microarray Serological diagnosis

Background

Rickettsia heilongjiangensis, a spotted fever group (SFG) rickettsia isolated from ticks in 1983 in Heilongjiang Province of China [1], is the causative agent of Far-eastern spotted fever (FESF). FESF has been considered as an important emerging infectious disease in Northeast Asia for this rickettsiosis has been diagnosed in Northeast of China [2], east-Siberian and far-eastern regions of Russia [3, 4], and Japan [5]. Most of the patients naturally infected by R. heilongjiangensis had fever, chills, headache, dizziness, myalgias, arthralgias, and anorexia after an incubation period of 4 to 7 days, and later most of the patients appeared with a macular or maculopapular rash at the site of tick attachment and lymphadenopathy regional to the eschar [4]. Almost half of the patients had hepatomegaly accompanied with an increased alanine aminotransferase and/or aspartate aminotransferase activity [4]. In a murine model, R. heilongjiangensis caused severe systemic infection with lesions in multiple organs (liver, lung, and brain) [6].

So far, the laboratory diagnosis of rickettsioses in hospitals is mainly based on serological methods although cell culture and molecular tools like PCR or real-time PCR are applied [7]. Immunofluorescence assay (IFA) is the gold standard and is used as a reference technique in most laboratories [7]. A gold diagnostic standard for rickettsioses, IFA followed by real-time PCR, has been built in the French National Reference Center (FNRC) [8]. However, IFA needs to cultivate rickettsial cells as diagnostic antigens, which is both burdensome and dangerous.

Some efforts have been focused on screening rickettsial proteins as serodiagnostic antigens of rickettsioses [9, 10]. Kowalczewska et al. characterized 20 rickettsial recombinant proteins by enzyme-linked immune sorbent assay (ELISA) with sera from patients infected by R. typhi or R. conorii[10], in which, many surface-exposed proteins (SEPs) like Adr2, Omp1, PLD, RickA, Sca1, Sca10, and Sca13 were used. In fact, many SEPs have been found to be suitable as diagnostic antigens, such as a 56 kDa outer membrane protein in detection of Orientia tsutsugamushi infection [11, 12] and a surface protein Pap31 in detection of Bartonella bacilliformis infection [13]. These findings indicate that SEPs are more likely to be diagnostic candidates. In our previous study, 24 SEPs of R. heilongjiangensis were identified and their recombinant proteins (rSEPs) fabricated on a microarray were serologically analyzed and eleven of them were recognized as major seroreactive proteins and potential candidate antigens for serological diagnosis of FESF by sera from mice experimentally infected with R. heilongjiangensis[9]. Also, these rSEPs in microarray assay showed a higher specificity in recognizing R. heilongjiangensis-infected mouse sera compared with that in ELISA [9]. In the present study, these rSEPs fabricated on a protein microarray were assayed with paired sera from FESF patients during the acute and convalescent phase.

Methods

Patient sera

FESF was diagnosed in patients by PCR using whole blood [14] as well as clinical symptoms consistent with tick-bite fever, multiple inoculation eschars and cutaneous rash in hospital. IgG antibody titers of patient sera were determined by IFA with R. heilongjiangensis antigen as described previously [9]. Each case of FESF was confirmed by a single serum with the specific IgG titer of ≥1:128 or the paired sera with a fourfold or greater increase of the specific IgG titers. The paired sera were collected from 17 patients suffered from FESF during the acute and convalescent phase. The acute-phase sera were collected from the patients at the date of onset of illness, and the convalescent-phase sera were collected from the same patients approximately two weeks after the first sampling. Also, 20 sera, collected from acute febrile patients with uncertain diagnoses and their titers of IgG antibodies to R. heilongjiangensis being determined to be less than or equal to 1:8 in IFA, were used as negative control or as reference sera to assess diagnostic specificity of the microarray assay in this study.

All of the patient sera were obtained from a hospital in northeast China. The serum samples of patients were collected as part of the routine management of patients without any additional sampling. All patients gave their informed consent and all patient data were deidentified. The Institutional Review Board of the Beijing Institute of Microbiology and Epidemiology approved the research involving human materials.

Preparation of recombinant proteins

Eleven rSEPs of R. heilongjiangensis, including rGroEL, rOmpA-2, rOmpB-3, rPrsA, rRplA, rRplY, rRpsB, rSdhB, rSurA, rYbgF, and rRh054_02285, were used in the present study. The preparation and purification of these recombinant proteins were described in our previous study [9, 15].

Immunoblotting assay

The purified rSEPs were immunoblotted with the paired sera from one patient with FESF. Briefly, rSEPs separated by SDS-PAGE were transferred to polyvinylidene difluoride (PVDF) membrane. The PVDF membrane was blocked with 1% [w/v] bovine serum albumin (BSA) in phosphate buffer saline (PBS, containing 8.1 mM Na2HPO4, 1.9 mM NaH2PO4, and 154 mM NaCl) at pH 7.4 overnight. Then, rSEPs on the PVDF membrane were incubated with the acute- or convalescent-phase serum (1:250 dilution) that was previously neutralized with E. coli lysate (5 mg/ml) for 1 h. After three washes in PBST (pH 7.4 PBS containing 0.05% [v/v] Tween 20), the PVDF membrane was incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG (1:5 000 dilution; Beijing CoWin Biotech, Beijing, China) for 1 h. Following an additional three washes in PBST, the PVDF membrane was developed using a diaminobenzidine (DAB) kit (Boster, Wuhan, China).

Fabrication of protein microarray

Each of the purified rSEPs diluted in PBS to a concentration of 0.3 mg/ml was printed on epoxy slides (CapitalBio, Beijing, China) in 5 replicate spots as described previously [16]. Human IgG with serial dilutions (2.5, 5, 10 and 20 μg/ml) was used to fit the internal calibration curves or as positive controls. BSA in PBS or lysate of E. coli cells transformed with pET-32a plasmids at a concentration of 0.3 mg/ml was used as negative controls [16]. For quality control, the microarray slides were incubated with mouse anti-His tag IgG-Cy5 (SBA, Birmingham, AL) and the fluorescence intensity (FI) of each protein on the slides was scanned by GenePix Personal 4100A (Molecular Devices, Sunnyvale, CA) and analyzed by GenePix Pro 6.0 software (Molecular Devices, Sunnyvale, CA) [16]. Proteins with a signal-to-background ratio over 3.0 were used for further analysis [16].

Analysis of proteins on microarrays by patient sera

The rSEPs on the microarray slide were probed using patient sera according to previous descriptions [9]. Briefly, the microarray slide was blocked with 1% [w/v] BSA in PBS overnight. Then each well on the slide was incubated with 50 μl of each patient serum (1:50 dilution) that were previously neutralized with E. coli lysate (5 mg/ml) for 1 h [16]. After six washes in PBST, the microarray slide was developed by incubation with goat-anti human IgG-Cy5 (SBA) (1:500 dilution) for 1 h. Following an additional five washes in PBST and a final wash in deionized water, the air dried microarray slide was scanned with a GenePix Personal 4100A scanner and the scanned images were analyzed by GenePix Pro 6.0. The FI value of each protein was calculated by averaging the FI values of five replicate spots, which had been background-subtracted [9].

Microarray data analysis

Human IgG dose-FI value curves were fitted with linear regression analysis using GraphPad Prism 5 software (GraphPad Software, Inc., San Diego, CA). The relative amounts of specific IgG (RASIgG) to individual rSEPs in each serum were determined by interpolating the calculated FI value with the IgG internal calibration curve [17].

The cutoff value for individual rSEPs in the microarray assay was generated as described previously using Youden’s index [13]. The reaction was considered positive if the RASIgG to one rSEP in any of the patient sera was higher than the cutoff value.

Statistical analysis

The log-transformed IgG titers to R. heilongjiangensis in IFA and the numbers of rSEPs recognized by FESF patient sera in microarray assay were analyzed for potential correlations by linear regression using GraphPad Prism 5 software.

The IgG titer of the convalescent-phase serum divided by the IgG titer of the acute-phase serum was calculated as the increased titer for each paired sera. The increase in RASIgG to each rSEP in each paired sera was calculated as follows: The increased RASIgG = RASIgG to one rSEP in the convalescent-phase serum/RASIgG to the same rSEP in the acute-phase serum.

In paired sera, the correlation between the increase in IgG titers (log transformed) to R. heilongjiangensis and the increase in RASIgG to individual rSEPs was analyzed by linear regression using GraphPad Prism 5 software.

Results

IgG titers of sera determined by IFA

The IgG titers of 17 paired sera from FESF patients were determined by IFA with R. heilongjiangensis antigen. Fourteen of these paired sera showed a fourfold or greater rise in specific IgG titers and the other 3 paired sera showed high specific IgG titers greater than or equal to 1:128 (Table 1).
Table 1

The IgG titers of paired sera from patient suffered from FESF in IFA

Patients no.

Acute-phase serum sample

Convalescent-phase serum sample

Diagnostic criteria

1

128

512

Fourfold increase

2

64

1024

Fourfold increase

3

256

512

IgG titer ≥128

4

64

256

Fourfold increase

5

32

512

Fourfold increase

6

128

1024

Fourfold increase

7

128

1024

Fourfold increase

8

256

512

IgG titer ≥128

9

32

512

Fourfold increase

10

256

256

IgG titer ≥128

11

64

1024

Fourfold increase

12

64

1024

Fourfold increase

13

64

512

Fourfold increase

14

128

1024

Fourfold increase

15

128

1024

Fourfold increase

16

64

512

Fourfold increase

17

64

1024

Fourfold increase

Immunoblotting assay

Eleven rSEPs of R. heilongjiangensis were immunoblotted by the acute- or convalescent-phase serum from one of FESF patients (patient 8 in Table 1). As shown in Figure 1, seven rSEPs (rGroEL, rOmpA-2, rRh054_02285, rRplA, rRpsB, rSurA, and rYbgF) were recognized strongly by both acute- and convalescent-phase serum and the rest were recognized weakly. Seven rSEPs (rGroEL, rOmpA-2, rPrsA, rRplA, rRpsB, rSdhB, and rYbgF) showed a stronger staining reaction with the convalescent-phase serum than with the acute-phase serum.
https://static-content.springer.com/image/art%3A10.1186%2F1471-2334-14-332/MediaObjects/12879_2014_Article_3636_Fig1_HTML.jpg
Figure 1

SDS-PAGE and immunoblotting analysis of the purified rSEPs. Eleven rSEPs were analyzed with SDS-PAGE (A) and immunoblotted with acute-phase sera (APS) or convalescent-phase sera (CPS) of patient 8 (B). The relative amount of specific antibodies to individual rSEPs in APS or CPS of patient 8 was calculated in microarray assay (C). Lanes 1 to 11 refer to rGroEL, rOmpA-2, rOmpB-3, rPrsA, rRh054_02285, rRplA, rRplY, rRpsB, rSdhB, rSurA, and rYbgF, respectively. Lane M refers to protein markers and their relative molecular masses are indicated in kDa on the left.

Quality control of protein microarray

For quality control, the microarray slides printed with rSEPs were incubated with mouse anti-His tag IgG-Cy5 (SBA, Birmingham, AL) and scanned for their FI values. The coefficient of variations (CV) was calculated as the SD of the FI value for each SEP divided by the average FI value. As a result, the within-slide CV (n = 6) and between-slide CV (n = 6) of individual rSEPs on the microarray ranged from 8% to 18%.

Sensitivity and specificity of rSEPs in microarray assay

Internal calibration curve of the microarray was generated by probing a serial dilution of human IgG solution with goat-anti human IgG-Cy5 and the FI value of BSA probed with goat-anti human IgG-Cy5 was set as the first point of the internal calibration curve. Linear regression analysis revealed that all the calibration curves gave the good correlation coefficients (r2) ranging from 0.967 to 0.997 (Figure 2).
https://static-content.springer.com/image/art%3A10.1186%2F1471-2334-14-332/MediaObjects/12879_2014_Article_3636_Fig2_HTML.jpg
Figure 2

One example of the internal calibration curves generated using serial dilutions (0, 2.5, 5, 10 and 20 μg/ml) of human IgG probed with goat-anti human IgG-Cy5.

Eleven rSEPs on the microarray were probed with the patient sera. As a result (Table 2), all the rSEPs showed sensitivities of between 53% and 82% in recognizing acute-phase sera and of between 65% and 82% in recognizing convalescent-phase sera, and all the rSEPs except rRplA showed specificities of between 80% and 95%. Four rSEPs (rOmpA-2, rRplA, rRpsB, and rSdhB) showed sensitivities of ≥71% in recognizing both acute- and convalescent-phase sera. Also the summary of sensitivities of each protein to both acute- and convalescent-phase sera and specificity of each protein was calculated to generally evaluate its ability as a candidate antigen for diagnosis of FESF. As a result (Table 2), four rSEPs (rOmpA-2, rOmpB-3, rRpsB, and rSdhB) scored higher than the rest.
Table 2

The sensitivity and specificity of individual rSEPs on microarray probed with the acute-phase sera (n = 17) or convalescent-phase sera (n = 17)

 

Sensitivity (%)

Specificity

Summary*

Proteins

Acute-phase

Convalescent-phase

(%)

(%)

rGroEL

65

65

80

209

rOmpA-2

71

82

85

238

rOmpB-3

65

82

90

237

rPrsA

53

76

95

224

rRh054_02285

71

65

90

225

rRplA

71

82

65

218

rRplY

65

82

85

232

rRpsB

71

71

95

236

rSdhB

82

76

90

249

rSurA

59

82

90

231

rYbgF

65

65

90

219

*The summary of sensitivities of each protein to both acute- and convalescent-phase sera and specificity of each protein was calculated to evaluate its ability as a candidate antigen for diagnosis of FESF.

Relationship between specific IgG titers of sera and seroreactivity of rSEPs

Linear regression analysis revealed a significant positive correlation between the log-transformed IgG titers to R. heilongjiangensis in all the patient sera and the numbers of proteins recognized by these sera (Figure 3, r2 = 0.5381, P <0.0001, n = 54).
https://static-content.springer.com/image/art%3A10.1186%2F1471-2334-14-332/MediaObjects/12879_2014_Article_3636_Fig3_HTML.jpg
Figure 3

Linear regression analysis to examine potential relationships between the IgG titers of FESF patient sera (n = 54) and the numbers of rSEPs recognized by these sera. The IgG titer of each serum in IFA was log transformed. The analysis was conducted using GraphPad Prism 5 software (GraphPad Software, Inc., San Diego, CA).

In addition, linear regression analysis revealed that significant correlations between the increase in the log-transformed IgG titers to R. heilongjiangensis for paired sera and the rising in RASIgG to rOmpA-2 (r2 = 0.2621, P = 0.0356) or rRpsB (r2 = 0.2838, P = 0.0277) in these sera (Table 3).
Table 3

Linear regression analysis to examine potential relationships between the increased IgG titers to R. heilongjiangensis and the increased IgG level to individual rSEPs in paired sera

Protein name

Coefficients of correlations (r2)

Pvalue

rGroEL

0.09251

0.2353

rOmpA-2*

0.2621

0.0356

rOmpB-3

0.01372

0.6544

rPrsA

0.1329

0.1502

rRh054_02285

0.002353

0.8533

rRplA

0.06482

0.3241

rRplY

0.003742

0.8156

rRpsB*

0.2838

0.0277

rSdhB

0.005894

0.7696

rSurA

0.05963

0.3449

rYbgF

0.04017

0.4405

*Statistically significant (P < 0.05) associations are marked.

Discussion

In our previous study [9], eleven SEPs of R. heilongjiangensis were recognized as major seroreactive antigens and potential candidate antigens for serological diagnosis of FESF in microarray assay with R. heilongjiangensis-infected mouse sera. In the present study, their recombinant proteins fabricated on a microarray were assayed with paired sera from FESF patients so as to identify potential candidate antigens for serological diagnosis of FESF, as well as to explore the kinetic change of the specific antibodies to individual SEPs in FESF patients.

Firstly, these rSEPs were immunoblotted by paired sera from one FESF patient, and most of them showed a stronger reaction with the convalescent-phase serum than with the acute-phase serum, which suggested that more specific antibodies to these SEPs appeared in the convalescent-phase serum. This could not be quantitatively determined in the immunoblotting assay. However, the reactivity of each rSEP with individual sera was quantitatively determined by the microarray assay. In addition, the FI value of each protein probed with individual sera was interpolated with the calibration curve, which minimized variability in this quantitative determination so as to improve the within-slide and between-slide analytical precision.The individual rSEPs were analyzed by both immunoblot and microarray assay using the paired sera from patient 8. All of the rSEPs except OmpB-3 and YbgF, to which the RASIgG were higher in microarray, showed a stronger staining reaction in immunoblot assay (Figure 1B,C). The exception may be due to the different states of OmpB-3 and YbgF existing in different assays. OmpB-3 was stained very lightly in immonoblot while the RASIgG in the serum detected with microarray was big, which might be due to the tertiary structure of OmpB-3 on the microarray slide that might have exerted a steric effect to promote non-specific absorption of IgG from the sera, one effect that would not apply to the denatured OmpB-3 in the immunoblot assay. YbgF was stained strongly in immunoblot assay while the RASIgG in microarray assay was small. YbgF was denatured and might provide more epitopes to bind the specific antibodies in immonoblot assay, while it maintained its native structure and might provide less epitopes to bind the specific antibodies in the microarray assay.

In this microarray assay, only 5% to 20% of reference sera from the acute febrile patients without antibodies to R. heilongjiangensis reacted positively to individual rSEPs except rRplA, suggesting these rSEPs had a good specificity. The cross-reaction might be caused by the conservative SEPs such as the ribosomal protein RplA and patients from whom the reference sera were collected have suffered from other infection caused by bacteria which shared the conservative SEPs with R. heilongjiangensis. All of these rSEPs gave a sensitivity of over 65% to the convalescent-phase sera from FESF patients while five rSEPs (rOmpA-2, rOmpB-3, rRplA, rRplY, and rSurA) had a higher sensitivity of 82% to them. However, only rSdhB had a higher sensitivity of 82% to the acute-phase sera from FESF patients and the other rSEPs gave sensitivities of only between 53% and 71% to them.

The summary of sensitivity and specificity was calculated and four rSEPs (rOmpA-2, rOmpB, rRpsB, and rSdhB) had relatively higher scores. Also we found that the four rSEPs could recognize 63%, 63%, 74%, and 85% of the 19 FESF patient sera with lower IFA titer of ≤256 (2, 7, 5, and 5 of these sera have IFA titers of 32, 64, 128, and 256, respectively), respectively. When combination analysis of the data resulting from two, three, or four of the four rSEPs was performed (Table 4), and the patient was diagnosed as having FESF if the serum sample from him or her is positively recognized by at least one of the rSEPs, better sensitivities of between 76% and 94% to the acute-phase sera or between 82% and 100% to the convalescent-phase sera and acceptable specificities of between 75% and 90% were obtained. Our results suggest that the remarkable variation in immune recognition patterns for FESF require multi-antigen combination to cover the different antibody responses and thus achieve the highest possible test sensitivity. Serological tests are the easiest methods for the diagnosis of rickettsiosis but seroconversion is usually detected 7–15 days after disease onset [18]. Our combination assay could recognize as many as 94% of the acute-phase sera and hopefully diagnose FESF rapidly at the early stage of infection. Therefore, the four rSEPs may be considered as more likely candidate antigens for the serological diagnosis of FESF, especially rSdhB, with its sensitivity of 82% to the acute-phase sera and 76% to the convalescent-phase sera with specificity of 90%. Furthermore, refinement of the production of fusion molecules comprised of these SEPs and the reaction conditions of microarray assay described herein may lead to improve the sensitivity and specificity for the serodiagnosis of FESF. Epitopes in these proteins can be predicted using bioinformatics method and synthesized to evaluate their ability of diagnosis of FESF. Then the molecules fused with different combination of the selected epitopes may show better sensitivities and specificities.
Table 4

The sensitivity and specificity of the combination assays composed of different rSEPs in recognizing the acute-phase sera (n = 17) or convalescent-phase sera (n = 17)

 

Sensitivity (%)

Specificity

Proteins

Acute-phase

Convalescent-phase

(%)

rOmpA-2&rOmpB-3

82

94

80

rOmpA-2&rRpsB

76

94

80

rOmpA-2&rSdhB

88

94

80

rOmpB-3&rRpsB

82

94

90

rOmpB-3&rSdhB

88

94

80

rRpsB&rSdhB

82

82

85

rOmpA-2, rOmpB-3&rRpsB

88

100

80

rOmpA-2, rOmpB-3&rSdhB

94

100

75

rOmpA-2, rRpsB&rSdhB

88

94

75

rOmpB-3, rRpsB&rSdhB

88

94

80

rOmpA-2, rOmpB-3, rRpsB&rSdhB

94

100

75

All of these rSEPs except rRh054_02285 and rSdhB probed with the convalescent-phase sera gave the same sensitivity or a higher sensitivity than probed with the acute-phase sera. This is not unexpected since the convalescent-phase sera had higher titers of antibodies to R. heilongjiangensis. We noticed that RASIgG to rRh054_02285 or rSdhB did decrease when probed with paired sera from some patients, indicating the specific IgG level to these proteins decreased quickly in some of these FESF patients during the convalescent phase.

Linear regression analysis revealed a significant positive correlation between the log-transformed specific IgG titers of FESF patient sera in IFA and the numbers of rSEPs recognized by these patient sera in microarray assay (Figure 3, P < 0.0001). This indicated that specific IgG levels to individual SEPs might contribute to the specific IgG titers to R. heilongjiangensis in FESF patient sera since they were major seroreactive antigens of R. heilongjiangensis. Moreover, the increase in IgG titers to R. heilongjiangensis for paired sera and the rising in RASIgG to rOmpA-2 or rRpsB in these sera were significantly correlated (Table 3, P < 0.05), indicating that antibodies to OmpA-2 or RpsB contributed more to the increase in IgG titers to R. heilongjiangensis than antibodies to other SEPs.

In the present study, the number of paired patient sera tested was small, which may influence the sensitivities and specificities of these rSEPs. Detection of specific IgM antibody to individual rSEPs might improve the sensitivity to acute-phase sera of FESF patients and unfortunately some paired patient sera were not enough to do this test. Therefore, it is necessary to get more serum samples of FESF patients for this microarray assay in the future.

Conclusions

In conclusion, the eleven SEPs were serologically characterized with paired sera from FESF patients, and four rSEPs (rOmpA-2, rOmpB-3, rRpsB, and rSdhB) are more likely candidate antigens for the serological diagnosis of FESF. In addition, an optimized microarray composed with the four rSEPs may give an acceptable sensitivity for serological diagnosis of FESF during both the acute and convalescent phase.

Notes

Declarations

Acknowledgments

This work was supported by a grant (2010CB530200/2010CB530205) from the National Basic Research Program of China and a grant (2013ZX10004803) from the Natural Science and Technology Major Project of China.

Authors’ Affiliations

(1)
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology

References

  1. Lou D, Wu YM, Wang B, Lui GD, Li JZ, Wang W, Han YF: A new member of the spotted fever group of rickettsiae—Rickettsia heilongjiangensis. Chin J Microbiol Immunol. 1985, 5: 250-253.Google Scholar
  2. Wu Y, Zhang Z, Wang H, Yang Q, Feng L, Wang J: Investigation on the epidemiology of Far-East tick-borne spotted fever in the Northeastern area of China. Chin J Epidemiol. 2008, 29 (12): 1173-1175.Google Scholar
  3. Shpynov SN, Fournier PE, Rudakov NV, Samoilenko IE, Reshetnikova TA, Yastrebov VK, Schaiman MS, Tarasevich IV, Raoult D: Molecular identification of a collection of spotted fever group rickettsiae obtained from patients and ticks from Russia. Am J Trop Med Hyg. 2006, 74 (3): 440-443.PubMedGoogle Scholar
  4. Mediannikov OY, Sidelnikov Y, Ivanov L, Mokretsova E, Fournier PE, Tarasevich I, Raoult D: Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East. Emerg Infect Dis. 2004, 10 (5): 810-817.View ArticlePubMedPubMed CentralGoogle Scholar
  5. Ando S, Kurosawa M, Sakata A, Fujita H, Sakai K, Sekine M, Katsumi M, Saitou W, Yano Y, Takada N, Takano A, Kawabata H, Hanaoka N, Watanabe H, Kurane I, Kishimoto T: Human Rickettsia heilongjiangensis infection, Japan. Emerg Infect Dis. 2010, 16 (8): 1306-1308.View ArticlePubMedPubMed CentralGoogle Scholar
  6. Duan C, Meng Y, Wang X, Xiong X, Wen B: Exploratory study on pathogenesis of far-eastern spotted fever. Am J Trop Med Hyg. 2011, 85 (3): 504-509.View ArticlePubMedPubMed CentralGoogle Scholar
  7. La Scola B, Raoult D: Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol. 1997, 35 (11): 2715-PubMedPubMed CentralGoogle Scholar
  8. Renvoisé A, Rolain JM, Socolovschi C, Raoult D: Widespread use of real‒time PCR for rickettsial diagnosis. FEMS Immuno Med Microbiol. 2012, 64 (1): 126-129.View ArticleGoogle Scholar
  9. Qi Y, Xiong X, Wang X, Duan C, Jia Y, Jiao J, Gong W, Wen B: Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis. PLoS One. 2013, 8 (7): e70440-View ArticlePubMedPubMed CentralGoogle Scholar
  10. Kowalczewska M, Vellaiswamy M, Nappez C, Vincentelli R, Scola BL, Raoult D: Protein candidates for the serodiagnosis of rickettsioses. FEMS Immuno Med Microbiol. 2012, 64 (1): 130-133.View ArticleGoogle Scholar
  11. Jang WJ, Huh MS, Park KH, Choi MS, Kim IS: Evaluation of an immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of Orientia tsutsugamushi infection. Clin Diagn Lab Immunol. 2003, 10 (3): 394-398.PubMedPubMed CentralGoogle Scholar
  12. Chao CC, Huber ES, Porter TB, Zhang Z, Ching WM: Analysis of the cross-reactivity of various 56 kDa recombinant protein antigens with serum samples collected after Orientia tsutsugamushi infection by ELISA. Am J Trop Med Hyg. 2011, 84 (6): 967-972.View ArticlePubMedPubMed CentralGoogle Scholar
  13. Angkasekwinai N, Atkins EH, Romero S, Grieco J, Chao CC, Ching WM: An evaluation study of enzyme-linked immunosorbent assay (ELISA) using recombinant protein Pap31 for detection of antibody against bartonella bacilliformis infection among the Peruvian population. AmJTrop Med Hyg. 2014, 90 (4): 690-696.View ArticleGoogle Scholar
  14. Fournier PE, Dumler JS, Greub G, Zhang J, Wu Y, Raoult D: Gene sequence-based criteria for identification of New rickettsia isolates and description of rickettsia heilongjiangensis sp. nov. J Clin Microbiol. 2003, 41 (12): 5456-5465.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Qi Y, Xiong X, Duan C, Jiao J, Gong W, Wen B: Recombinant protein YbgF induces protective immunity against Rickettsia heilongjiangensis infection in C3H/HeN mice. Vaccine. 2013, 31 (48): 5643-5650.View ArticlePubMedGoogle Scholar
  16. Xiong X, Wang X, Wen B, Graves S, Stenos J: Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiol. 2012, 12: 35-View ArticlePubMedPubMed CentralGoogle Scholar
  17. Mezzasoma L, Bacarese-Hamilton T, Di Cristina M, Rossi R, Bistoni F, Crisanti A: Antigen microarrays for serodiagnosis of infectious diseases. Clin Chem. 2002, 48 (1): 121-130.PubMedGoogle Scholar
  18. Brouqui P, Bacellar F, Baranton G, Birtles RJ, Bjoersdorff A, Blanco JR, Caruso G, Cinco M, Fournier PE, Francavilla E, Jensenius M, Kazar J, Laferl H, Lakos A, Lotric Furlan S, Maurin M, Oteo JA, Parola P, Perez-Eid C, Peter O, Postic D, Raoult D, Tellez A, Tselentis Y, Wilske B: Guidelines for the diagnosis of tick-borne bacterial diseases in Europe. Clin Microbiol Infect. 2004, 10 (12): 1108-1132.View ArticlePubMedGoogle Scholar
  19. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/14/332/prepub

Copyright

© Qi et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement