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Abstract
Background Antimicrobial resistance (AMR) represents a significant threat to global health with Neisseria gonorrhoea 
emerging as a key pathogen of concern. In Australia, the Australian Gonococcal Surveillance Program (AGSP) plays 
a critical role in monitoring resistance patterns. However, antibiotic susceptibility test (AST) uptake – a crucial 
component for effective resistance surveillance – remains to be a limiting factor. The study aims to model the 
processes involved in generating AST tests for N. gonorrhoea isolates within the Australian healthcare system and 
assess the potential impact of systematic and policy-level changes.

Methods Two models were developed. The first model was a mathematical stochastic health systems model (SHSM) 
and a Bayesian Belief Network (BBN) to simulate the clinician-patient dynamics influencing AST initiation. Key variables 
were identified through systematic literature review to inform the construction of both models. Scenario analyses 
were conducted with the modification of model parameters.

Results The SHSM and BBN highlighted clinician education and the use of clinical support tools as effective 
strategies to improve AST. Scenario analysis further identified adherence to guidelines and changes in patient-
level factors, such as persistence of symptoms and high-risk behaviours, as significant determinants. Both models 
supported the notion of mandated testing to achieve higher AST initiation rates but with considerations necessary 
regarding practicality, laboratory constraints, and culture failure rate.

Conclusion The study fundamentally demonstrates a novel approach to conceptualising the patient-clinician 
dynamic within AMR testing utilising a model-based approach. It suggests targeted interventions to educational, 
support tools, and legislative framework as feasible strategies to improve AST initiation rates. However, the research 
fundamentally highlights substantial research gaps in the underlying understanding of AMR.
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Introduction
Antimicrobial resistance (AMR) is an emerging global 
health crisis which poses significant threat to public 
health systems [1]. Of particular interest is the sexually 
transmitted infection (STI) caused by Neisseria gonor-
rhoeae [2]. N. gonorrhoeae is a STI which has emerged 
as a bacterium of particular interest with the rapid 
emergence of multi-drug resistant species [3, 4]. As an 
implication for public health systems, a thorough under-
standing of N. gonorrhoea epidemiology is imperative for 
the evaluative processes involved in refining stewardship 
efforts [2, 5, 6].

In the context of Australia, the development and imple-
mentation of the Australian Gonococcal Surveillance 
program (AGSP) signalled the significance of under-
standing N. gonorrhoea epidemiology and shifts in resis-
tance patterns [7]. In synergy with legislation mandating 
the notification of N. gonorrhoeae infection, the AGSP 
operates by collating data from Australian state and ter-
ritory reference laboratories [7]. For resistance data to 
be collected along with the notification, the isolate must 
have an antibiotic susceptibility test (AST) performed [7]. 
The processes involved in the system ultimately aim to 
inform clinical management and public health policies. 
However, there are significant challenges in understand-
ing resistance patterns with the increasing use of molec-
ular-based diagnostic testing methods like that of nucleic 
acid amplification tests (NAAT) limiting the availability 
of isolate resistance data [8].

Australia’s AMR strategy is currently rudimentary and 
without strategic objectives [9–11]. Previous efforts to 
evaluate the AMR surveillance system has found clini-
cian initiation of ASTs as the most influential factor to 
delineation of strategic objectives [12]. Fundamentally, 
the AGSP requires associated ASTs to be present with 
from N. gonorrhoeae isolates to enumerate data [7]. In 
endeavour to delineate strategic objectives, the absence 
of isolates limits the capability for robust epidemiologi-
cal estimates of N. gonorrhoeae prevalence and resistance 
patterns to be enumerated. This absence of empirical 
data to guide stewardship limits the generation of effec-
tive stewardship efforts.

Model-based approaches offer a structured paradigm 
to understanding the intricacies of a healthcare system 
and its outcome within a given context. The employ-
ment of modelling presents the inherent benefits of 
identifying the underlying factors and quantifying their 
relationships to facilitate a greater comprehension of the 
system’s dynamics. Within wider AMR literature, models 
have been developed to evaluate vaccination programs, 
identify economic opportunities, and better understand 
transmission dynamics [13]. A similar approach can be 
taken to understand the determinants of AST initiation 

and identify potential scenarios for which improvements 
can be made.

Study aims and rationale
The following paper aims to provide a foundation for 
future stewardship efforts by quantitatively modelling 
the processes involved within AST generation and the 
impact of systematic changes to the proportion of ASTs 
initiated. The rationale for understanding the determi-
nants of AST initiation is pivotal for improving objectives 
set out by the AGSP. Identifying and modelling the inter-
actions between factors allows for a greater comprehen-
sion of the current system. The study is informed by 2 key 
objectives:

1. The identification and modelling of key factors 
implicated in the AST generation process.

2. The assessment of potential impact of various 
systematic and policy-level interventions on the rates 
of AST initiation.

Methods and methodology
Modelling methodology
The study aims to model the clinical and diagnostic pro-
cesses involved in the initiation of AST for N. gonor-
rhoeae isolates. The complexity of the clinician-patient 
interaction with variability in diagnostic and clinical 
practices substantiate difficulty in a definitive represen-
tation. For the generation of a data point in the AGSP 
regarding resistance, an isolate must receive have an 
AST initiated to determine resistance status. Despite the 
given complexities, the following models aim to simulate 
the processes to better improve the data generation pro-
cesses of the AGSP.

Two models have been developed to represent the 
processes involved in the generation of AST for N. gon-
orrhoea isolates. Two paradigms have been presented in 
the absence of detailed patient-clinician dynamics The 
models serve to explore different hypotheses concern-
ing the structure. The first model is a mathematical sto-
chastic health systems (SHSM) model. The second model 
selected is a Bayesian Belief Network (BBN).

Identification and selection of variables
In the process of constructing the models, variables for 
each model had to be identified. A systematic search of 
academic literature was conducted. The purpose of the 
search was to identify the main determinants that are 
implicated within the clinician-patient dynamic that 
was to be modelled. In acknowledging the absence of 
literature directly regarding N. gonorrhoea AST tests 
and its determinants, the search was widened to gen-
eral determinants in sexually transmitted infection (STI) 
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diagnoses. Following the search, two reviewers PD an SB 
independently read through the search results and identi-
fied key barriers and facilitators to initiation of diagnostic 
testing. Following the extraction of literature, an influ-
ence matrix was created to represent the causal relation-
ships between the identified variables. All details of the 
systematic search, identification of variables, and influ-
ence matrix are included in supplementary file 1.

Stochastic health systems model and outputs
The stochastic health system model (SHSM) is a math-
ematical model which represents a paradigm whereby the 
AST initiation appear random at a systems level. Broadly 
defining the paradigm, the health systems level refers to 
the overarching structures and processes that govern the 
health service at a population level. While random, the 
model outputs are influenced by a multitude of deter-
ministic factors within the patient clinician dynamic 
that collectively drive the probability of AST initiation. 
The structure of the model allows for the exploration of 
system-level modification of factors which may shape the 
probability of testing. The schematics of the stochastic 

health systems model and the proposed outputs and 
interventions are depicted in Fig. 1.

The model operationalises the process of N. gonorrhoea 
AST testing by generating a synthetic population with 
confirmed cases of N. gonorrhoea that exhibit resistance. 
All parameters for the modelling process are available in 
supplementary material 2. The stochastic health system’s 
model was created and implemented within R (Version 
4.2.3). At baseline, clinician adherence (α) was set to the 
following proportional split of 70%/25%/5% for moder-
ate, high, and low adherence distributions. All population 
parameters and inputs are available in supplementary file 
2 (Table S1–S4).

The model works by procedurally generating a syn-
thetic population (n = 10,000) , modelled to population 
parameters, which then interacts with the clinicians to 
simulate entering the health system. The model is run 
10,000 times and produces a mean value with 95% confi-
dence intervals. The patient-clinician interaction is mod-
elled as the product of clinician knowledge and patient 
risk which would result in the initiation of an AST. Fol-
lowing the generation of the synthetic population based 
on the specified parameters, a probabilistic assignment 

Fig. 1 Schematic representation of the stochastic health systems model for N. gonorrhoea antibiotic susceptibility testing with proposed interventions 
and outputs
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to clinician type is completed. The probability for assign-
ment denotes the proportion of agents available which 
is defined as Pr (ai) where Ai  would be the population 
assigned to agent ai .

 Ai = n · Pr (ai)

The clinician patient interaction models clinician and 
patient factors through a weighted summation of risk. 
Program evaluation and review technique (PERT) dis-
tributions have been used to parameterise odds ratios 
derived from literature and implement stochasticity. Sup-
plementary file 2 (Table S2–S4) contains all the param-
eter values. Patient risk θi and clinician experience τi are 
quantified by aggregating binary variables xi  for patients 
and yi  for clinicians multiplied by their respective 
weights wi  and zi .

 
θi (xi, wi) =

∑n

i=1
xi · wi τ (yi, zi) =

∑n

i=1
yi · zi

In our model, we normalise both patient risk and clini-
cian experience scores to a [0,1] interval using sigmoid 
functions φa for patients and φb for clinicians. These 
sigmoid functions represent the probabilities that influ-
ence the initiation of AST. Specifically, φa(θi) transforms 
patient score θi into probabilities reflecting likelihood of 
requiring an AST due to having resistance present. For 
clinicians φb(τi) maps clinician test score τi into probabil-
ities reflecting the likelihood of initiating test, modified 
by adherence parameter α. For example, 70% adherence 
rate would set α=0.7.

 
φa (θi) =

1

1 + e−θi
φb (τi) =

1

1 + e−α·τ (yi,zi)

Finally, to get the probability of an individual is tested 
such that they are perceived as a risk, λi, we model the 
probability it as two independent events given by the 
transformed risk probabilities as previously calculated.

 λi= Pr (Risk|Test) = φa · φb where λi ∈ [0,1]

Then test status is then assigned using the binomial func-
tion φi  with the probability of success being λi .

 φi ∼ Binomial (n, λi)

Supplementary file 2 (Fig S9) contains the displays 
the sensitivity analysis of the binomial function based 
on probabilities. Intervention scenarios include the 
improvement of clinician knowledge through steward-
ship or education, mandates with increased adherence, 
and the introduction of clinical AMR support tools. 

Further information regarding the scenario permutations 
is included in supplementary file 2.

Bayesian belief network building
Bayesian Belief Networks (BBNs) are a graphical, proba-
bilistic modelling technique which enables the explicit 
representation of conditional dependencies between 
variables and causal pathways, often through a directed 
acyclic graph (DAG) [14]. BBN comprise of 3 main ele-
ments: (1) A set of variables representing a system with a 
set of states; (2) links between variables to denote causal 
relationships and influence; (3) Conditional probabilities 
tables (CPTs) which describe the influence that the vari-
ables exert given a denoted relationship [15]. These CPTs 
facilitate the computation of the joint probability over a 
set variable using the Bayes’ Theorem to provide a proba-
bilistic output for given a range of states:

 
P (X1, X2, . . . , Xn) =

∏n

i=1
P (Xi|Parents (Xi))

The BBN has been chosen as it represents a non-random 
paradigm whereby the initiation of an AST test is seen 
as the result of conditional interdependencies. Funda-
mentally, the BBN suggests the probability of AST test 
initiation by the clinician is solely dependent on the indi-
vidual’s presentation to the healthcare system. Unlike the 
stochastic model, the model focuses on individual level 
determinants rather than viewing it at a systems level.

Bayesian belief network parameterisation
The BBN was developed using a two-step approach. 
The first was a systematic literature search to identify 
the key structures implicated and processes in initiating 
an AST. Following the systematic search, a dependency 
matrix was developed to denote core relationships. The 
initial model was built within Netica (NorSys) and later 
implemented in GeNIe (BayesFusion) for validation. Fur-
ther refinements to the model structure were made using 
expert elicitation. Due to the absence of empirical data, 
the conditional probability tables (CPTs) were param-
eterised using expert opinion. Adapted from Cain [16], 
for consistent population of the CPTs, the base case sce-
nario and worst case scenario were used as benchmarks 
for probability allocation.

Bayesian belief network evaluation
The model evaluation step focuses on checking the con-
sistency and robustness of the BBN. However, it is to 
be noted that the metrics used to evaluate predictive 
capability do not imply a comprehensive causal model. 
Though, the predictive power is a desirable feature of 
a causal model. To evaluate the model’s consistency, a 
sensitivity analysis on key variables to identify the most 
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influential relationships was conducted. Variance of 
beliefs was used as the main metric to assess the influ-
ence of parent nodes on the target node. If needed, 
adjustments were then made to the model structure to 
rectify discrepancies in relational weighting of nodes.

To evaluate the robustness of the BBN, the receiver 
operator curve (ROC) was the main metric used to 
assess the model’s predictive performance. The model 
was calibrated using K-fold partitioning (K = 2) using 
a generated casefile from GeNIe (n = 10,000) . The data 
was partitioned into training and testing datasets using 
an 80%/20% split respectively. Following the learning of 
CPTs based on maximisation of expectation using the 
training data, the initial parameters were then updated by 
fitting the data file to the final model. The model was then 
tested on the testing dataset to produce an ROC curve.

Core assumptions of both models
The models have underlying assumptions which are criti-
cal to the interpretation of their outputs. Primarily, both 
models presuppose that historical data gathered from the 
past 15 years (2008–2022) are adequate to represent the 
continuing trends of proportion of ASTs initiated. Within 
the stochastic model, this assumption further extends 
to the randomness at a systems level whereby outcomes 
are influenced by a nuanced interaction of stochasticity 
and determinism. Conversely, the BBN is fundamentally 
predicated on the existence of conditional interdepen-
dence of determinants for a test to be initiated.

Additionally, both models implicitly rely on exter-
nal factors such as resource availability, and policies to 
be embedded within the model’s parameters without 
dynamically modelling their temporal impact. Explicit 
external assumptions within both models assume the fol-
lowing: (1) population homogeneity in the presence in 
resistance to simplify the patient-client interactions with 
all resolvable diagnoses; (2) availability of resources with 

negligible impact due to locality; (3) assumed immediate 
follow up with AST testing and (4) the mechanism for 
resistance testing is elective with Nucleic Acid Amplifi-
cation Testing (NAAT) being the default pathway for N. 
gonorrhoea diagnosis. Further detail regarding the mod-
el’s individual parameter assumptions have been listed 
in supplementary file 2 for the stochastic health systems 
model and supplementary file 3 for the BBN.

Parameterisation of historical data
The BBN and the stochastic health system model requires 
the parameterisation of historical data to validate the 
probabilistic outputs. This approach would allow for a 
robust basis for comparison between the model outputs 
and empirical evidence. In parameterisation, historical 
data was obtained from publicly accessible AGSP reports 
from 2002 to 2022 to determine the number of isolates 
tested for the respective year [8, 17–28]. The number of 
notifications were obtained through extraction of pub-
licly available data from the National Notifiable Diseases 
Surveillance System (NNDSS) data visualisation tool 
[29]. The proportion of isolates tested during the period 
is depicted in Fig. 2.

We adopt a beta distribution to model the variability 
in proportion of notifications with an isolate. The shape 
parameters α and β are determined by empirical data, 
whereby α represents the number of cases with isolates 
tested. Parameter α is calculated as k + 1 where k  is the 
number of isolates received during the overall period of 
2008–2022. Parameter β is calculated as n− k + 1 where 
n is the total number of N. gonorrhoea notifications 
within specified period of 2000–2022. Therefore, the pro-
portion of tests initiated, denoted by random variable Xi

, can modelled by the following beta distribution:

 Xi ∼ β (11354,214662)

Fig. 2 Timeseries depicting the proportion of N. gonorrhoea isolates tested from the Australian Gonococcal Surveillance Program (AGSP) between 
2002–2022
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To allow for greater variation in proportions, the param-
eters α and β were divided by a value of 10. The final dis-
tribution used was:

 Xi ∼ β (1135.4,21466.2)

Results
Results of the stochastic health system model and the 
bayesian belief network
The stochastic health systems model is presented in 
Fig.  3. The stochastic health systems model yielded a 
mean expected test proportion of 0.316 (95% CI; 0.305, 
0.327). This test proportion output by the model suggests 
31.6% of confirmed N. gonorrhoeae cases would have an 
AST initiated. The outputs of the model are shown to 
have congruence with the historical data modelled by the 
beta distribution, β (1the.4,21466.2) with the expected 
test proportion of 0.315 (95% CI; 0.311, 0.320). From ini-
tial review, the stochastic model demonstrates accuracy 

in capturing the central tendency of the historical data 
for the proportion of AST initiated.

The BBN is presented in Fig.  4. The full model with 
CPTs and the sensitivity analysis is available in supple-
mentary file 2. The BBN developed consists of 10 nodes. 
These nodes cover the factors of past diagnoses, sexual 
orientation, number of partners, epidemiological fac-
tors, medication adherence, persisting symptoms, clini-
cian experience, initial treatment failure, AST test and 
unprompted test. Broad categorisations of the model 
can be made. Epidemiological, factors represent the 
population level factors inclusive of past diagnoses, sex-
ual orientation, and number of sexual partners an indi-
vidual presents with. Individual level factors include 
medication adherence and the persistence of symp-
toms. Clinical experience of the clinician with sexual 
health is represented by the clinician experience node. 
Unprompted tests accounts for the possibility of a test 
being initiated regardless of the of any factors. The target 
node of the BBN is AST test. At the initial state, the BBN 
would indicate most cases of N. gonorrhoea would not be 

Fig. 4 Bayesian Belief Network (BBN) for the initiation of an antibiotic susceptibility test (AST)

 

Fig. 3 Results of the Stochastic Health Systems Model validated to historical data parameterised by β (1135.4, 24166.2)
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tested (69.3%) with the populated epidemiological data 
and estimated clinician experience.

Scenario analyses
The results of the scenario analysis for the SHSM and 
BBN were modelled by the modification of model param-
eters are presented below. Further details on how the 
modifications were made can be seen in supplementary 
file 2 for the SHSM and supplementary file 3 for the BBN.

Improvement of clinician knowledge through education or 
stewardship
The rationale for this scenario were assumed to have 
greater awareness regarding resistance of isolates. To 
mimic an improvement in clinician knowledge in the 
SHSM, the parameters for clinicians’ experience were 
incrementally increased by percentages of 10–25%, 
26–50%, 51–75%, and 76–100%. For the SHSM, the 
improvement is assumed to be uniform across the popu-
lation. The BBN considers the deterministic nature of cli-
nician experience during a consultation. The parameter 
values for clinician experience were modified at incre-
mental values of 0, 0.25, 0.50, 0.75, and 1.0. The results 
are displayed in Fig.  5 for the SHSM and Fig.  6 for the 
BBN.

As a general trend, simulating the improvement of 
clinician awareness through the modification of the 

clinician knowledge parameter yielded a linear increase 
across categories from the base scenario. An incremental 
increase in clinician knowledge by10-25% yielded an esti-
mate of 0.348 (95%; 0.328, 0.369). A 76-100% increase in 
clinician knowledge yielded an estimated proportion of 
tests initiated to be 0.410 (95% CI; 0.389, 0.432).

The modification of clinician experience parameter in 
the BBN through the increase of values produced lower 
proportions of AST initiation. The data would indicate 
a decreasing trend with the modification of the clinician 
parameter to 0 indicating an increase test proportion at 
0.338 when compared to the clinician parameter being 
set to 1.0 yielding test initiation rates of 0.294.

Improvement through the introduction of clinical support 
tools
The simulated results for the system-wide introduction of 
a clinical support tool to help clinicians decide whether 
to initiate an AST is presented in Fig.  7 for the SHSM 
and Fig. 8 for the BBN. In this scenario, a clinical tool is 
introduced to improving AMR testing. For the SHSM, 
this improves a clinician’s probability of testing, through 
the addition of another variable, that is modified by 
their adherence. In the BBN, the recognition of persist-
ing symptoms should become more apparent and thus 
improve the probability of a test being initiated via modi-
fication of the persisting symptoms variable. The results 

Fig. 5 Stochastic health system model outputs in the scenario of improving clinician awareness through education and/or stewardship via the modifica-
tion of clinician knowledge variable at a split 70%/25%/5% clinician population (average, high, and low adherence)
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indicate a general increase in proportion of tests initiated 
with a greater proportion of clinicians possessing such 
tool. At the lowest, 10–25% of clinicians having a clini-
cal support tool would increase the proportion of tests 

from base scenario to 0.336 (95% CI; 0.320, 0.352). In the 
scenario where 76–100% of the clinician population have 
a tool, the model estimates a value 0.423 (95%CI; 0.398, 
0.448) tests initiated. The presence of clinical tools which 

Fig. 7 Stochastic health system model outputs in the scenario of introducing clinical support tool to various proportions of clinicians at base estimate of 
70/25/5 clinician population (average, high, and low adherence)

 

Fig. 6 Improvement of clinician experience parameter in the BBN at values of 0, 0.25, 0.50, 0.75, and 1.00
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modify the recognition of persistence of symptoms was 
observed to greatly increase the probability of an test ini-
tiated with modification of the parameter to 100% yield-
ing a 71% chance of AST test initiation.

Dual scenario improvements
The results of introducing both clinical support and 
stewardship are presented below in Fig. 9 for the SHSM 
at base level adherence and Fig. 10 for the BBN. Gener-
ally, the SHSM notes improvements are noted at all lev-
els of implementation. For the SHSM, improvements of 
10–25% in clinical awareness and having clinical sup-
port tools, the model projects a statistically significant 
increase from the base scenario at 0.366 (95%CI; 0.344, 
0.389) and 0.396 (95% CI; 0.370, 0.420) for the low and 
high adherence scenarios respectively. Increasing the 
experience and probability that symptoms have been 
persisting yielded a general increase with the BBN. 
By setting clinician experience to 100% and recogni-
tion of persisting symptoms to 100%, the probability 
for AN AST was observed to be 67.40%. For the SHSM, 
the greatest improvement is noted within scenario 4 at 
within the high adherence scenario with at 0.515 (95% 
CI; 0.497, 0.532). It is observed at greater levels of edu-
cational improvement and clinical support tool uptake, 
the proportion of tests initiated is projected to be greater 
when the clinician population is at higher adherence as 
opposed to lower. For incremental improvements at 
the levels 10–25% and 26–50% it has been the changes 

between high adherence and low adherence are not 
significant.

Improvements through mandates
The introduction of mandates is assuming tests are 
initiated regardless of clinical decision making and 
deterministic factors. However, as tests are clinician ini-
tiated, estimates only depend on clinician adherence to 
guidelines. For the SHSM, tests are solely based on the 
adherence parameter regardless of the value of other 
parameters. In running the scenario for the BBN, the 
variable unprompted test has its values modified at incre-
ments. Results are depicted in Figs.  11 and 12 for the 
SHSM and BBN respectively. Generally, the trend noted 
by the results demonstrates a linear increase as the num-
ber of high adherence clinicians increases. At a conserva-
tive estimate of 60/30/10 (60% moderate adherence, 30% 
high adherence, 10% low adherence) the estimated pro-
portion tested is 0.576 (95% CI; 0.503; 0.648). Optimisti-
cally with an estimated clinician population of 5/90/5, the 
estimated proportion of tests initiated is 0.837 (95% CI; 
0.751, 0.924).

Interventions to bayesian belief network
Scenarios with the bayesian belief network
The scenario analysis conducted on in the BBN for AST 
initiation offers comprehensive insights is presented in 
Table 1. The results demonstrate the influence of varying 

Fig. 8 Proportion of AST initiation rates with scenario to introduce clinical support tools in assisting the recognition of persisting symptoms as produced 
by the BBN at values of 0, 0.25, 0.50, 0.75, and 1.00
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the parameters that are exclusive on the probability of 
initiating an AST.

The modification of epidemiological risk factors simu-
lates a scenario whereby the population the clinician is 
in changes. Epidemiological risk factors showed a direct 
positive relationship. With no risk factors, the prob-
ability drops by 6.51% to 0.287 while increasing solely to 

high-risk populations yielded an increase of 16.161% to 
0.358.

Adjustment of two or more parameters generally 
resulted in increases of AST initiation probability. Clini-
cal experience was observed to dampen the gains in 
AST initiation probability when modified in permuta-
tions with others. The highest increase of 158.95% to a 

Fig. 10 BBN based with clinical support tools and improvements in clinical awareness through stewardship or education with selected permutations

 

Fig. 9 Stochastic health system’s model output based with clinical support tools and improvements in clinical awareness through stewardship or educa-
tion. (A) Shows the proportion of tests initiated with a low adherence scenario with a 70/25/5 split in clinician population. (B) Depicts a high adherence 
scenario with a 5/90/5 split in clinician population
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Fig. 12 BBN outputs for AST initiation rates simulating a mandate scenario by modifying the unprompted AST parameter to values of 0, 0.25, 0.50, 0.75, 
0.99

 

Fig. 11 Stochastic health systems models output for proportion of AST tests initiated in the scenario of testing mandates. Clinician population is varied 
with differing average/high/low percentages
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probability of 0.795 was observed when modifying persis-
tence and epidemiological high-risk to 100% to simulate 
a high probability of persistence with an at-risk popula-
tion. Moderate increases were seen with combinations of 
high risk and clinical experience (0.348) and persistence 
of symptoms with clinician experience (0.674). When 
all three parameters were increase together, AST initia-
tion incrementally increased. The lowest probability was 
at 0.0064 in the absence of all parameters. A substantial 
increased was observed in the maximisation of all param-
eter values by 150.48% to 0.769.

Discussion
The primary aim of the study was to develop two models 
to identify the factors involved in the initiation of AST 
and identify the impact various systematic changes have 

on testing rates. To our knowledge, the paper presents 
two novel models developed to outline the causal path-
ways implicated in the initiation of AST. This is crucial 
as this step subsequently leads to the generation of a sur-
veillance system data point.

The choice to model N. gonorrhoea AST initiation and 
simulate systematic changes was predicated on the neces-
sity to understand the clinician-patient dynamics within 
AMR. This process is fundamental and a potentially rate-
limiting step in the data generation processes implicated 
within AMR surveillance. Building a greater understand-
ing of the underlying determinants would inform refine-
ments of practices to improve testing and subsequently 
confidence in surveillance figures. The paper has done so 
by presenting two models. The decision to develop two 
distinct models was driven by the absence of literature 
defining the core characteristics of the clinician-patient 
dynamic within the context of AMR testing for N. gon-
orrhoea. Given the naïve state of empirical research, the 
dual-model approach was deemed necessary to hypoth-
esise foundations for the resultant model structures.

Interestingly, the contrast presented by the SHSM and 
BBN offers collective value in understanding the intri-
cate dynamics of clinician decision making in the AMR 
context. The models encapsulate the stochastic and 
deterministic elements of clinical behaviour and offer 
frameworks that bridge gaps within existing AMR litera-
ture. Evidently, there is a difference in conceptualisation 
of how clinical experience works. The BBN would suggest 
more experienced clinicians are less likely to initiate an 
AST which contrasts the SHSM’s randomness assump-
tion. The presumption for the behaviour is predicated 
on literature suggesting experienced clinicians can better 
tolerate uncertainty and thus led to lower diagnostic test-
ing [30]. Despite this fundamental difference, the results 
of the scenario analysis are identical in general trend. 
Indeed, the only underlying difference is the magnitude 
of the intervention effect on AST initiation rates. Given 
further advancements in literature which highlight the 
nuances of AMR test behaviour, a clear choice for the 
models and subsequent paradigm can be chosen.

Despite the foundational differences, both models con-
verge on outcomes as demonstrated within the scenario 
analysis. The convergence suggests while the approach 
to modelling clinician behaviour can vary, the overarch-
ing influences on AST initiation – like those of clinician 
experience and adherence to guidelines – remain con-
stant across the stipulated conceptual frameworks. The 
contrast and complementarity of the two models suggest 
the choice between the two models should be guided by 
the characteristic nature of the population. Indeed, the 
SHSM is suited to environments where clinician behav-
iour may be highly variable and influenced by unpredict-
able factors that not been explicitly outlined. Conversely, 

Table 1 Scenario analysis using the Bayesian belief network 
for selected scenarios with probabilistic outputs of the AST test 
node and percentage of change from the initial state
Scenarioa New state 

probability 
of AST test

Percentage 
change 
from initial 
stateb (%)

Epidemiological Factors (Proportion high risk)
High Risk 0% 0.287 −6.51
High Risk 25% 0.305 −0.65
High Risk 50% 0.322 4.88
High Risk 75% 0.340 10.75
High Risk 100% 0.358 16.61
Persisting symptoms & Epidemiological Risk
Persistence 0% & High-Risk 0% 0.063 −79.19
Persistence 25% & High-Risk 25% 0.233 −24.10
Persistence 50% & High-Risk 50% 0.411 33.87
Persistence 75% & High-Risk 75% 0.598 94.78
Persistence 100% & High-Risk 100% 0.795 158.95
Epidemiological Risk & Clinician Experience
High-risk 0% & Clinician experience 0% 0.320 4.06
High-risk 25% & Clinician experience 25% 0.324 5.24
High-risk 50% & Clinician experience 50% 0.330 6.97
High-risk 75% & Clinician experience 75% 0.338 9.17
High-risk 100% & Clinician experience 
100%

0.348 11.78

Epidemiological Risk, Clinician Experience & Persisting Symptoms
High-risk 0%, Clinician experience 0% & 
Persisting Symptoms 0%

0.064 −79.15

High-risk 25%, Clinician experience 25% & 
Persisting Symptoms 25%

0.246 −19.87

High-risk 50%, Clinician experience 50% & 
Persisting Symptoms 50%

0.422 37.459

High-risk 75%, Clinician experience 75% & 
Persisting Symptoms 75%

0.595 93.811

High-risk 100%, Clinician experience 
100% & Persisting Symptoms 100%

0.769 150.48

a Select scenarios are displayed with increments of 0.25 using Netica’s 
calibration function
b Initial state of 0.307 on the AST initiated node
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the BBN’s deterministic nature would be ideal for settings 
where data on causal relationships is robust and well-
documented. Overall, the choice of the model for best 
prediction within the Australian context would require a 
better understanding of the AMR testing dynamics pres-
ent within clinical practice.

Strengths and limitations of the models
There are inherent strengths and limitations that must be 
acknowledged in the interpretation of the model outputs.

In the interpretation of the model outputs, a key char-
acteristic of the models that must be considered is the 
validity of the models. One strength presented by the 
paper for the models is their internal validity. The inter-
nal validity of the constructed models is supported by 
their foundations in existing STI literature and their 
validation to empirical historical data. For the stochastic 
health systems model, validity has been sought through 
the parameterisation of historical data. The model’s align-
ment with the parameterised historical data would indi-
cate a credible simulation of health system’s level AST 
initiation dynamics. For the BBN, a mixture of empirical 
epidemiological data and expert opinion have been used 
to refine the system structure and elucidate the causal 
pathways influencing AST initiation. The sensitivity anal-
ysis conducted further validates the structural and para-
metric integrity by reflecting sound relational integration 
between nodes. Moreover, with the BBN is robust with 
high predictive capability.

An interesting point of discussion arises when examin-
ing the external validity. A potential limitation presented 
is the absence of external validation due to the novelty of 
the models. Though the developed models exhibit exten-
sive internal validity with alignment to literature and 
expert opinion, critical appraisal of the models reveals 
gaps in literature that, if addressed, could further refine 
the generalisability of the model outputs. For instance, 
the causal relationships and determinants for a clini-
cian to initiate an AST have no overwhelming consensus 
within the surrounding literature. The model building 
methodology has sought to address this gap by postulat-
ing two contrasting paradigms whereby the process could 
either be random yet deterministic at a health systems 
level or completely deterministic at a clinical level. This 
bifurcation of the paradigms serves purposes beyond 
theoretical considerations as it forms the basis on how 
the system could be examined. Further research into con-
solidating a consensus in the processes implicated in test 
generation would provide further commentary regarding 
external validity of the models.

The model building methodology presented within this 
paper has limitations that are essential to be acknowl-
edged. The SHSM and BBN have pragmatic underly-
ing assumptions that have been implemented to achieve 

parsimony. The model’s presuppose uniform access to 
diagnostic care, consistent resistance patterns, uniform 
diagnostic practices and sufficiency of historical data 
to for validation. These assumptions present a layer of 
abstraction to the clinician-patient dynamic. However, 
the assumptions are a necessity in model building to (1) 
simplify model interpretation and (2) absence of litera-
ture to quantitatively define the influence these assump-
tions have on outputs. Therefore, it is imperative for 
model outputs to be viewed as approximations. Further-
more, parameterisation is challenging in the absence of 
rich literature to delineate the influence variables exert 
upon one another. The stochastic model’s strength is the 
capacity to circumvent this via utilising AMR data asso-
ciating population-level factors with outcomes. The BBN 
faces more pronounced challenges due to the reliance on 
definitive causal pathways and the population of CPTs. 
Expert opinion has been sought for CPT population and 
outputs are within values given by historical data. Over-
all, there has been methodological conveniences imple-
mented, necessitated by current limits in the granularity 
of AMR patient-clinician dynamics that could be fur-
ther improved with further research to understand and 
expound on the intricacies presented within the models.

Scenario analyses
The SHSM and BBN models and their respective simu-
lation of scenarios highlight potential system level 
improvements to leverage in the endeavour to increase 
AST proportions.

Interestingly, the SHSM’s projections suggest improve-
ments in clinician awareness through stewardship could 
significantly increase AST initiation rates to mirror the 
early-stage proportions of isolates tested recorded by the 
AGSP. The increase in clinician awareness by 76–100% is 
indicative of a return to historical test data proportions. 
The increase from 0.316 to 0.410 aligns with the reported 
value in 2008 [21]. Further extrapolating trends would 
delineate a relationship with awareness and proportions 
tested. Indeed, pre-2008 AGSP data indicates propor-
tions greater than 40% [21] and this would mirror projec-
tions made by modifying clinician awareness beyond the 
stipulated 76–100% presented in the results. The parallel 
drawn would suggest a previous heightened awareness of 
the AGSP and AMR which has subsequently waned over 
time with determinants, such as the uptake of NAAT 
[8], leading to a reduction in current testing rates. The 
SHSM’s findings provide a foundation for further action 
to be taken to revitalise educational efforts regarding 
AMR within the clinical space.

The SHSM model’s outputs highlights deployment of 
clinical support tools as a pragmatic scenario for improv-
ing the AST initiation rates. Surrounding literature 
regarding adoption of support tools has consolidated the 
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consensus regarding uptake of the tools in clinical prac-
tice [31–33]. The results of the model would indicate 
similar level of improvements to that of modifying cli-
nician knowledge parameters with 0.396 (95%CI; 0.373, 
0.420) and 0.404(95% CI; 0.383, 0.426) respectively. The 
similarity would suggest that clinical support tools for 
AMR could serve as an adjunct or alternative to direct 
educational interventions which is problematic due to 
quantification of AMR knowledge. While promising, it is 
imperative to consider real-world factors such as acces-
sibility and acceptability which are not captured by the 
model [34]. Further contextualised assessment of the cri-
teria is needed to realise the potential gains highlighted 
by the model in future research.

Adherence to guidelines emerge as a substantiative 
determinant in understanding and improving AST ini-
tiation rates as indicated by the SHSM dual strategy 
scenario. The model is fundamentally predicated con-
versative estimation of clinician adherence to guidelines 
which has been rationalised by surrounding literature 
concerning clinical practice literature [35]. Improve-
ments strategies that concurrently bolster clinical 
knowledge and integrate clinical support tools could sub-
stantially be elevated with a health workforce with higher 
adherence tendencies.

The scenarios presented by the BBN present an inter-
esting paradigm regarding improvement in AST ini-
tiation being largely influenced by patient level factors. 
Within the scenario analyses of the BBN, substantial 
increases were noted when patient level factors were 
modified. More notably, increasing the probability that 
has persistence of symptoms can yield two-fold increases 
in probability for a test to be initiated. Assuming unifor-
mity in testing probability across a population, it would 
suggest more tests would be initiated if a larger propor-
tion of cases originate from either a higher risk group or 
greater amounts of individuals having persisting symp-
toms. This is possible with increased patient awareness 
of AMR. Though, literature has not substantiated a large 
research corpus surrounding public awareness on AMR 
and impact on patients initiating diagnostic testing pro-
cesses. However, for surveillance purposes, it is likely 
such scenario would lead to increased bias within sam-
pling which limits the representativeness of the system.

Case for mandated susceptibility testing
Both models would indicate the greatest improvement 
in AST initiation is observed with testing mandates. As 
observed in the probabilistic outputs unprompted tests 
and mandates for the SHSM, rates greater than 90% can 
be achieved. The lower value output by the SHSM con-
siders potential stochasticity at a systems level whereby 
adherence to guidelines is an influential determinant. 
Indeed, the mandate scenario has legislative grounds for 

plausibility in Australia with current guidelines indicat-
ing mandatory notification of N. gonorrhoea infections. 
In such case of mandates, every N. gonorrhoea notifica-
tion would have a parallel culture initiated or the pre-
dominant diagnostic method includes sensitivity testing. 
Diagnostic AMR literature has identified methods for 
rapid ASTs which have the potential for integration into 
existing diagnostic frameworks [36]. To bolster the con-
fidence in the surveillance systems, the mandate of AST 
tests presents as a potential mechanism.

There are concerns regarding the practicality of man-
dates given the potential stress on laboratory capacity 
given the rapid increase of N. gonorrhoea notifications 
within Australia. The feasibility and necessity of achiev-
ing absolute certainty within surveillance system is 
debatable. The paradigm presented is idealistic to the 
designated objectives of the system to monitor and 
evaluate trends. Without further assessment of capac-
ity, the materialisation of such paradigm is unlikely to 
occur. Pragmatic approaches employing survey design 
principles and leveraging systematic randomised testing 
could enhance the representativeness of the surveillance 
system while mitigating potential laboratory strain. For 
example, the instigation of biweekly AST testing on all 
notifications could result in a testing proportion of 0.50. 
Furthermore, whilst AST initiation rates may exceed 
90%, as indicated by both model’s mandate scenarios, 
there needs to be the considerable of culture failure. 
Mohammed, et al. [37] in an analysis of N. gonorrhoeae 
isolates found that despite isolates being available for cul-
ture almost half of these failed and were not reattempted. 
At the current state, further inference on N. gonorrhoea 
AMR epidemiology based off any gains from AST initia-
tion, requires the consideration culture failure rate in lieu 
of more robust methods.

Conclusions
This study quantified the determinants influencing AST 
initiation for N. gonorrhoea within the Australian context 
and assessed the impact simulated, systematic changes 
on the system would have on test rates to enhance the 
AGSP. Two models were employed to achieve the objec-
tives with a mathematical model, SHSM, and BBN 
used to represent different paradigms in how to model 
the intricacies of the patient-clinician dynamic. Clini-
cian education, support tools, and adherence to guide-
lines were identified as potential leverages for further 
policy interventions to increase AST initiation. For the 
BBN, changes in population characteristics were identi-
fied to be most influential in clinical decision-making 
regarding AST initiation. Findings suggest underlying 
trends in wanning engagement in AMR awareness with 
potential interventions targeted, either through tools 
or clinical education interventions as mechanisms for 
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rectification. Both models support legislative changes 
regarding AMR testing frameworks through encompass-
ing legislation. Though practicality issues may arise with 
laboratory capacity constraints, pragmatic solutions with 
randomised testing strategies offer a mechanism to miti-
gate strain. Overall, the study offers insights on how to 
improve AMR surveillance for N. gonorrhoea within Aus-
tralia. However, the study suggests there are still innate 
gaps to the understanding of the AMR patient-clinician 
dynamic that has not yet been thoroughly elaborated 
upon to achieve granularity. This is an area necessitates 
further investigation by future studies.
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