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Abstract 

Background:  Multiple waves of the COVID-19 epidemic have hit most countries by the end of 2021. Most of those 
waves are caused by emergence and importation of new variants. To prevent importation of new variants, combina-
tion of border control and contact tracing is essential. However, the timing of infection inferred by interview is influ-
enced by recall bias and hinders the contact tracing process.

Methods:  We propose a novel approach to infer the timing of infection, by employing a within-host model to cap-
ture viral load dynamics after the onset of symptoms. We applied this approach to ascertain secondary transmission 
which can trigger outbreaks. As a demonstration, the 12 initial reported cases in Singapore, which were considered as 
imported because of their recent travel history to Wuhan, were analyzed to assess whether they are truly imported.

Results:  Our approach suggested that 6 cases were infected prior to the arrival in Singapore, whereas other 6 cases 
might have been secondary local infection. Three among the 6 potential secondary transmission cases revealed that 
they had contact history to previously confirmed cases.

Conclusions:  Contact trace combined with our approach using viral load data could be the key to mitigate the risk 
of importation of new variants by identifying cases as early as possible and inferring the timing of infection with high 
accuracy.
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Background
Most countries have experienced multiple waves of 
COVID-19 epidemic by the end of 2021. Those differ-
ent waves are due to emergence and importation of new 
variants of SARS-CoV-2. Further, given that waning 

immunity is inevitable even after infection or (multiple 
doses of ) vaccination [1–5], more waves of the epidemic 
are anticipated to happen in the next few years [6].

There are three major control knobs to prevent a resur-
gence: border control; test, trace contacts and isolate; 
and social distancing measures [7]. To avoid future out-
breaks, governments may need to implement various 
border control programs: quarantine of suspicious cases 
and isolation of confirmed cases, and travel restriction 
to and from countries with ongoing outbreaks. Border 
control, which is generally based on symptoms, cannot 
capture all cases given approximately a 5-day incubation 
period and non-negligible number of asymptomatic cases 
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of COVID-19 (i.e., cases can pass the control program if 
they are not symptomatic) [8–16]. Matteo and colleagues 
examined that travel border control only delayed epi-
demic progression by 3–5  days within China, suggest-
ing border control solely cannot prevent outbreaks [17]. 
Therefore, “test, contact trace and isolate” measure plays 
an essential role in controlling local transmission and 
reducing the risk of subsequent outbreaks.

Contact trace starts once cases are confirmed. Con-
firmed cases are followed by further investigation–
through interviews, contact tracing, and genomic 
analysis in some cases–to assess when and where they 
were infected [18, 19]. This tells us a lot about the trans-
mission mode and benefits contacts. First, contact trace 
benefits cases with better clinical outcomes. Bi and col-
leagues reported that the cases identified by contact trace 
were identified and treated earlier than cases identified 
by symptom-based survey in Shenzhen, China [20]. Sec-
ond, it is used to identify highly transmissible situation. 
For example, Nishiura and colleague found SARS-CoV-2 
is highly transmissible in closed environment through 
contact trace data [21]. The third, and what we will focus 
on in this study, is that contact trace is used to ascertain 
whether the cases are locally transmitted or imported.

Epidemics are triggered by importation of new cases. 
Indeed, Kathy and colleagues reported that the first wave 
was initiated by imported cases from Hubei province to 
mega cities such as Beijing, and the further local trans-
missions created the first wave [22]. Interestingly, new 
cases reported afterwards were imported from overseas, 
suggested potential risk of further outbreak in China. 
Thus many studies separately reported imported cases 
and cases of local transmission [22, 23]. Ascertaining 
whether new COVID-19 cases are imported or due to 
local secondary transmission is essential for a govern-
ment to develop public health strategies. If they are the 
latter and the number of local transmissions is substan-
tial, outbreaks are inevitable, and the goal of interven-
tion programs should be shifted from containment to 
mitigation.

Traditionally, the ascertainment of local transmission 
requires interview-based assessments, which would 
be time-consuming and potentially biased because the 
timing of infection is not directly observable in many 
cases (extremely hard for SARS-CoV-2 because it is an 
airborne disease [24–26]) except some special cases 
with specific known infection route such as HIV [27, 
28]. As such, most of the studies inferring the timing 
of infection for COVID-19 were based on active sur-
veillance or contact trace [8–11]. However, if cases 
cannot report correct day(s) of exposure, the inves-
tigation could be biased and the source of infection 

will not be identified. Especially for COVID-19, the 
bias could be worsen given relatively long incubation 
period of COVID-19 compared with influenza [17]. 
For example, if ones travel frequently during the long 
incubation period, they may not remember when and 
where they were exposed. Indeed, Lauer et  al. and Bi 
et  al. demonstrated large uncertainly on the estima-
tion of the timing of infection for COVID-19 in China 
[8, 20]. Even accounting for uncertainty for the timing 
of infection with exposure information using Bayesian 
approach when estimating incubation period [9, 29], 
bias is not perfectly removed. Further, given that there 
is substantial portion of pre-symptomatic and asymp-
tomatic infection [12–16], specification of the exposure 
events is challenging even with stringent contact trac-
ing protocol.

Mathematical models have been used to study infec-
tious diseases including COVID-19 at any scale from 
the population level to the within-host level [30]. Espe-
cially, between-hosts models are widely adopted to 
describe the transmission process (between hosts) of an 
infection, study the epidemiology of infectious diseases, 
and assess the effectiveness of different intervention 
measures at the population level [31–34]. These mod-
els found ample adoption by public health officials and 
governments in a number of ways that range from situ-
ational awareness to intervention planning and projec-
tions [35] as well as for filling data gaps, estimating key 
epidemiological parameters (such as the reproduction 
number), and explaining the mechanisms behind the 
observed patterns [20]. On the other hand, the model 
with another scale, within-host models have been 
developed to describe the process of viral replication 
and removal as well as immune response within a sin-
gle person [36]. Overall, these models capture both the 
viral dynamics within a host while it is infected as well 
as changes in immune level after infection (e.g., wan-
ing of immunity, boosting). Furthermore, these models 
can be used to describe and test personalized interven-
tions through in-silico experiments, providing insights, 
for instance, on the development of treatments and 
treatment regimens, timing of booster vaccination, and 
clinical trial design [37, 38]. Within-host models allow 
considering the intrinsic biological difference between 
patients, which may alter the epidemiology and trans-
mission patterns of an infectious disease outbreak (as 
observed for SARS-CoV-2 infection [16, 39–41]).

In this study, we propose to use the viral dynamics 
model to differentiate secondary local transmission 
from imported cases, which complements contact trace 
and reduces its inherent bias. For the purpose of illus-
tration, we analyzed cases in the early phase of the first 
wave in Singapore.
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Methods
In Singapore, the first case was identified on 23rd Janu-
ary 2020 (Fig.  1A). The first 18 cases had travel history 
to Wuhan, China, thus were considered to be imported 
cases[42]. Two days after the 18th case was confirmed (3rd 
February 2020), a new case was identified which had no 
history of traveling to China. To investigate the possibility 
of some of the original 18 being evidence of ongoing local 
transmission, we leveraged viral load data collected[42] for 
multiple time points after the onset of symptoms using a 
within-host viral dynamics model for SARS-CoV-2. This 
enables us to infer time of infection (i.e., before or after 
arrival to Singapore).

Viral load data
We extracted data from two published papers [42, 43] (we 
have not collected original data in this study). Nasopharyn-
geal swabs were collected from the 18 cases reported for 
up to 30  days from the onset of symptoms. Viral loads 
were measured by RT-PCR[42]. We excluded 5 cases who 
received antivirals (i.e., lopinavir, ritonavir) because the 
antiviral effect could not be quantified with the limited 
data, and a case whose viral load was detected only twice 
(i.e., not enough to hindcast the viral load trajectory). In 
total, we analyzed the first 12 cases. In order to find “infec-
tion establishment boundary” (see “Viral load boundary 
for infection establishment” section) and derive robust 
parameter estimation, we obtained an additional data-
set of viral loads measured in nasal swab collected from 
the 8 cases reported in Zhuhai, China[43]. Three of these 
cases were confirmed as secondary infections and their 
days of infection were reported, thus we used the informa-
tion to compute the viral load threshold for the infection 
establishment.

Cycle threshold (Ct) values reported in Zou et al. [43] and 
Young et  al. [42], which are the cycle numbers when the 
fluorescent signal crosses the threshold, were converted to 
viral RNA copies (copies/mL); these quantities were shown 
to be inversely proportional to each other from a previ-
ous SARS-CoV study [44]. The values under the detec-
tion limit were assumed to be at the detection limit for 
the purposes of fitting the model (see later for detail). We 
used the program datathief III (version 1.5, Bas Tummers, 
www.​datat​hief.​org) to extract the data from images in those 
publications. Waiver of informed consent was granted by 
public health authorities or written informed consent was 

obtained from study participants as described in the origi-
nal studies.

Viral load modelling to estimate the day of infection 
establishment
Based on a standard viral dynamics model, to describe 
SARS-CoV-2 dissemination among target cells, we used 
the following simple mathematical model previously pro-
posed [45–47]:

where f (t) and V (t) are the ratio of uninfected target 
cells and the amount of virus, respectively. The param-
eters β , γ , and δ represent the rate constant for virus 
infection, the maximum rate constant for viral replica-
tion, and the death rate of infected cells, respectively. All 
viral load data including Singapore and Zhuhai patients 
were simultaneously fitted using a nonlinear mixed-effect 
modelling approach, which uses the whole samples to 
estimate population parameters while accounting for 
inter-patient variation.

Further, sampled parameter sets were used to predict 
the estimated day of SARS-CoV-2 infection establish-
ment, that is, the start of the exponential growth phase 
of viral loads [47]. The infection establishment time, Tinf  , 
was estimated by hindcasting the mathematical model, 
when the viral load reaches a boundary. The viral load 
boundary for infection establishment was computed 
using the three secondary infection cases reported in 
Zhuhai, whose initial days of exposure to the primary 
cases are known [43]. We assumed that the initial day of 
exposure is equal to the day of infection establishment. 
Once the day of infection establishment is obtained for 
each case, it was compared against the date of arrival in 
Singapore. If the estimated day of infection is before the 
arrival in Singapore, it suggests that the infection was 
established outside Singapore, otherwise, the case is the 
result of secondary local transmission within Singapore.

Viral load boundary for infection establishment
To define “viral load boundary for infection establish-
ment”, we used the information of the three secondary 
cases with known primary cases in Zhuhai (i.e., Patients 
D, H and L) [43]: a primary infected patient (Patient E) 

(1)

df (t)

dt
= −βf (t)V (t),

dV (t)

dt
= γ f (t)V (t)− δV (t),

Fig. 1  Epidemic curve of COVID-19 and clinical course of patients in Singapore. A Epidemic curves of COVID-19 as of March 10, 2020 in Singapore 
are shown. The green and red solid bars correspond to the newly reported cases by date of symptom onset and by date of laboratory confirmation, 
respectively. B Each panel presents timeline of infection for each case. Expected SARS-CoV-2 viral dynamics and observed viral load for the first 13 
cases are depicted by grey (or black) solid lines and grey open circles, respectively. The timing of arrival to Singapore (red dashed lines), the timing 
of symptom onset (black dashed lines), the estimated timing of infection establishment (blue shaded areas), and the detection limit of viral load 
(grey dashed lines) are also shown

(See figure on next page.)

http://www.datathief.org
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Fig. 1  (See legend on previous page.)
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worked in Wuhan and visited Patient D and Patient L 
on January 17th, then Patients D and L developed symp-
toms on January 23rd and 20th, respectively.  Other pri-
mary infected patients (Patients I and P) visited Patient 
H on January 11th, and fever developed in Patient H 
on January 17th. This implies that exposure started on 
the day when the primary cases visited those secondary 
cases. Assuming that infection established on the initial 
day of exposure in the secondary cases, we hindcasted 
the mathematical model, and obtained the viral load on 
the initial day of exposure, which is defined as the infec-
tion establishment boundary: 10–6.67 to 10–5.18, 10–5.20 
to 10–3.88 and 10–1.14 to 100.03 for Patients D, H and L, 
respectively. We used the lowest (10–6.67) and highest 
(100.03) values as the boundary (Fig. 2).

Nonlinear mixed‑effects model
The nonlinear mixed-effects modelling approach incor-
porates fixed effects as well as random effects which 
describe the inter-patient variability in parameters. 
Including random effects amounts to a partial pooling of 
the data of all patients to improve estimates of the fixed 
effect parameters applicable across the cases. The param-
eter of patient k , θk(= θ × eπk )  is a product of θ (the fixed 
effect) and πk (the random effect), where πk is assumed 
to follow a normal distribution: N (0,�). The fixed effect 
parameters and random effect parameters were estimated 
using the stochastic approximation Expectation/Maximi-
zation (SAEM) algorithm and empirical Bayes method, 
respectively. A right-truncated normal distribution was 
used in the likelihood function to account for the left 
censoring of the viral load data (i.e., when the viral load 
is not detectable) [48]. MONOLIX 2019R2 (www.​lixoft.​
com), a program for maximum likelihood estimation for 
a nonlinear mixed-effects model, was employed to fit the 
model to the viral load data. We changed the initial val-
ues multiple times to avoid local minimum of AIC and 
confirmed the robustness of parameter estimation.

Results
Before describing the viral load data, here is the epide-
miological situation when the data were collected. Fig-
ure  1A depicts the weekly epidemic curve in Singapore 
from January 21st to March 15th based on the onset of 
symptoms and laboratory confirmation. The epidemic 
curve based on laboratory confirmation follows the curve 
based on the onset of symptoms because of the reporting 
delay. For the first few weeks, the epidemic in Singapore 
was not in the phase of exponential growth, which sug-
gests secondary transmissions were limited and any suc-
cessive transmission did not take place yet. The first 18 
cases discussed here are observed in the first two weeks 
of the epidemic.

For the first 12 ‘imported’ cases with travel history to 
Wuhan (6 were removed from the analysis due to insuffi-
cient viral load data or antiviral treatment. See the “Viral 
load data” section), their viral load data are plotted along 
with the curve of viral load estimated from the model 
(Fig. 1B) (note that time since the onset of symptoms was 
used as a time scale). Typically, the viral load exponen-
tially increases since infection because the viruses repro-
duce themselves successively in the target cells. The viral 
load hits peak when uninfected target cells run out. Then 
the viral load starts to decrease over time as the viruses 
and infected cells are removed from the host body. 
Although the viral dynamics curves of different patients 
share the above characteristics, there was also huge het-
erogeneity in the dynamics. Especially, the virus persis-
tence (i.e., the length of time the viral load is above the 
detection limit) and the hight of peak viral load were dif-
ferent between the patients. Such variability is due to the 
difference in biological (immunological) characteristics 
of each patient. For example, lower death rate of infected 
cells, δ , is translated into longer virus persistence (slower 
decay in viral load) (Additional file  1: Table  S1). How-
ever, interestingly, the viral load consistently hit the peak 
about 2–3  days after the onset of symptoms, suggest-
ing viral shedding is high even before the clinical onset. 

Fig. 2  Viral load dynamics of the three patients in China. The three panel presents timeline of infection for the three cases in Zhuhai, China used 
to compute the viral load boundary for infection establishment. Expected SARS-CoV-2 viral dynamics and observed viral load are depicted by grey 
(or black) solid lines and grey open circles, respectively. The timing of symptom onset (black dashed lines), the timing of infection establishment 
(known; blue shaded areas), and the estimated viral load boundaries for infection establishment (red dashed lines) are also shown

http://www.lixoft.com
http://www.lixoft.com
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Although viral shedding does not necessarily reflect the 
magnitude of infectiousness, this finding is concord-
ance with the previous studies suggesting non-negligible 
amount of pre-symptomatic infection [12–16]. Notably 
He and colleagues demonstrated that the infectiousness 
profile peaks around the onset of symptoms [16], which 
is similar to the viral load dynamics we estimated in this 
study.

Hindcasting the estimated viral load dynamics, the day 
of infection establishment was estimated, where viral 
load reaches the boundary (indicated by shaded blue area 
in Fig. 1B). Note that the estimation of the day of infec-
tion establishment has some uncertainty (about 6  days) 
because of uncertainty on the boundary of viral load 
threshold. By comparing the day of infection establish-
ment and the reported day of arrival in Singapore (which 
should be available from the immigration record in gen-
eral), suggested by red dotted line in Fig. 1B, whether the 
case was infected in or out of Singapore was assessed. 
Additional file 1: Table S2 summarized the day of infec-
tion establishment and arrival to Singapore in calendar 
time. We found that 6 of the 12 cases (Case 2, 3, 4, 14, 16, 
17) were clearly concluded as imported cases, whereas 
the remainder 6 cases (Case 6, 8, 9, 11, 12, 18) could have 
resulted from ongoing transmission locally in Singapore. 
For those suspicious secondary cases, contact tracing 
could provide further confirmation as to the timing of 
infection.

In fact, although all of the 12 were considered to be 
imported cases due to their travel history, the detailed 
investigation [42] revealed 3 cases (Case 8, 11, 18) among 
the 6 cases (Case 6, 8, 9, 11, 12, 18) for whom we could 
not exclude the possibility of secondary transmission had 
close contact with previously confirmed cases: Case 8 is 
a spouse of Case 9 travelled together to Singapore; Case 
11 and 18 were identified as close contacts of Case 4 and 
12, respectively. These findings suggest that our approach 
complements the traditional interview-based approach, 
and together with it, we can differentiate imported cases 
and cases of local transmission.

Discussion
Many countries in Europe, Asia, and North America 
experienced several waves of COVID-19 epidemic, which 
were slowed down due to stringent lockdown meas-
urements. The lockdown is not a sustainable measure 
because it downregulated world’s economy and impacted 
citizens’ health both physically and mentally [49, 50]. 
Therefore, ways to control epidemics without the lock-
down measures have been warranted.

In order to avoid further waves of the epidemic without 
stringent lockdown measures, the following three meas-
ures should be implemented together: border control; 

test, trace contacts and isolate; and social distancing. 
Along with them, closely monitoring transmission mode 
by contact trace is essential to identify cases and avoid 
further transmission. However, the contact tracing is 
generally interview-based and the timing of infection 
inferred by this method is influenced by recall bias. We 
proposed viral load-based approach to help contact trace 
identify the timing of infection establishment.

Indeed, contact trace is widely conducted in many 
countries, however, the process is time-consuming. Using 
digital technology has been proposed to identify contacts 
faster [51], although there are issues of privacy and data 
protection [52–54]. The Singapore government released 
such application as a step toward lifting lockdown [55], 
however, only limited population have installed the appli-
cation so far [56]. If many people do not install the app, 
all contacts cannot be identified. Further, infection events 
can occur indirectly (transmission can occur from con-
taminated surfaces [57, 58]), whether such apps can iden-
tify when and where infection occurred and eventually 
prevent outbreak is still uncertain.

In this study, we assessed whether the 12 initial cases 
which were classified as ‘imported’ were in fact imported 
or the result of secondary local transmission within Sin-
gapore. We found that 50% of the cases (6 out of 12) were 
clearly infected before arrival to Singapore (i.e., imported 
cases), the remaining half of the cases, however, could 
have been infected after the arrival in Singapore (i.e., sec-
ondary local transmission). This implies the possibility of 
within-country transmission prior to the 19th case (who 
is the result of local  transmission) being reported on 
February 3rd. Combined with interview-based contact 
tracing, this approach can identify the trace of local sec-
ondary transmission.

Our method is useful to infer the timing of infection, 
discerning between cases imported or autochthonous 
(i.e., before or after arrival to the country) complement-
ing contact trace. The advantage of using this method 
is that computation is solely based on viral load data. 
Collecting viral load could be a part of clinical practice 
as viral load has been collected for clinical purposes 
such as to understand the pathophysiology and aetiol-
ogy of new diseases especially in the early phase of out-
break [59–62]. Further, viral load is measurable with 
patients’ saliva (not nasopharyngeal swabs, which has 
been widely used) in COVID-19 cases. It will reduce 
the effort of measuring viral load and the risk of infec-
tion for health practitioners [63, 64]. Given that recall 
bias is an issue of contact tracing, our method can 
assist inferring the timing of infection which is usually 
done by interview. In other words, estimation using our 
approach will be further enhanced if combined with the 
complementary information (e.g., travel and contact 
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history and genetic information) thus reducing uncer-
tainty in our predictions. Therefore, we empathize that 
we are not undermining the value of contact tracing.

There are a few limitations in our approach. First, 
our approach requires viral load data over multiple 
time points (only the  patients with more than three 
viral load data points  were included in the analysis); 
therefore, we may not be able to accurately estimate 
the timing of infection if the number of data points are 
limited. In addition to the number of data points, the 
timing of data collection (i.e., immediately after or long 
after symptom onset) will be the key that determines 
whether the dynamics can be accurately estimated. 
Future studies should argue data collection process to 
define the best practices for the use of the viral dynam-
ics model in the context of inferring the timing of infec-
tion. Second, we need to note that both the boundaries 
and the day of infection establishment estimated using 
our approach could be underestimated, because infec-
tion is established after exposure starts. Third, we 
estimated the viral load boundaries of infection estab-
lishment with limited available data. Further studies 
need to investigate what factors are associated with 
the boundaries, such as countries, strains, and viruses. 
Fourth, we did not include the cases received antiviral 
therapy because of lack of information about its effect 
for SARS-CoV-2. However, once enough data about 
those antivirals are available, we can include those 
cases (we have already proposed a model accounting 
for antiviral effect [38, 65, 66]).

Conclusions
Now is the time to think about the balance between 
risk of further waves and the social and economic dam-
age accompanied by lockdown. To secure social and 
economic activities whilst  controlling the risk of next 
wave, we need to closely monitor infection events as 
well as implement various preventive measurements, 
which were effective to hammer the waves of the epi-
demic. Contact trace plays an essential role. Collecting 
and analysing viral load data would help calibrate the 
timing of infection establishment estimated by contact 
tracing. As such, the method we used may be critical to 
help shape a country’s early response to the next wave.
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