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Abstract 

Background:  During the early stage of the COVID-19 pandemic, many countries implemented non-pharmaceutical 
interventions (NPIs) to control the transmission of SARS-CoV-2, the causative pathogen of COVID-19. Among those 
NPIs, stay-at-home and quarantine measures were widely adopted and enforced. Understanding the effectiveness of 
stay-at-home and quarantine measures can inform decision-making and control planning during the ongoing COVID-
19 pandemic and for future disease outbreaks.

Methods:  In this study, we use mathematical models to evaluate the impact of stay-at-home and quarantine meas-
ures on COVID-19 spread in four cities that experienced large-scale outbreaks in the spring of 2020: Wuhan, New York, 
Milan, and London. We develop a susceptible-exposed-infected-removed (SEIR)-type model with components of 
self-isolation and quarantine and couple this disease transmission model with a data assimilation method. By calibrat-
ing the model to case data, we estimate key epidemiological parameters before lockdown in each city. We further 
examine the impact of stay-at-home and quarantine rates on COVID-19 spread after lockdown using counterfactual 
model simulations.

Results:  Results indicate that self-isolation of susceptible population is necessary to contain the outbreak. At a given 
rate, self-isolation of susceptible population induced by stay-at-home orders is more effective than quarantine of 
SARS-CoV-2 contacts in reducing effective reproductive numbers Re . Variation in self-isolation and quarantine rates 
can also considerably affect the duration of outbreaks, attack rates and peak timing. We generate counterfactual 
simulations to estimate effectiveness of stay-at-home and quarantine measures. Without these two measures, the 
cumulative confirmed cases could be much higher than reported numbers within 40 days after lockdown in Wuhan, 
New York, Milan, and London.

Conclusions:  Our findings underscore the essential role of stay-at-home orders and quarantine of SARS-CoV-2 con-
tacts during the early phase of the pandemic.
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Background
Emerged in late 2019, a new respiratory pathogen, SARS-
CoV-2, rapidly spread across the globe and caused a 
global pandemic. As of June 1, 2022, more than 527 

million confirmed cases have been reported worldwide, 
of which more than 6.2 million have died [1]. The disease 
caused by SARS-CoV-2, the coronavirus disease 2019 
(COVID-19), is characterized by a substantial proportion 
of infections with mild or no symptoms [2] and a strong 
age gradient in the risk of death [3, 4]. During the early 
stage of the COVID-19 outbreak, the number of con-
firmed cases generally followed an exponential increase. 
Studies have shown that the average estimate of the basic 
reproductive number R0 is between 2.24 and 3.58 [5]. 
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After China implemented strict control measures, the 
spread of COVID-19 within China was greatly reduced 
[6–10]. In other countries, after the initial reporting of 
infection cases, NPIs such as suspension of classes, ces-
sation of large-scale gatherings, and closure of enter-
tainment and leisure venues have been adopted. These 
control measures were estimated to effectively slow down 
the community transmission of SARS-CoV-2 [11–13].

Before the development of vaccine and its wide admin-
istration, NPIs are the primary means to reduce the 
spread of SARS-CoV-2 [14–16]. During vaccination 
campaign, NPIs also remain key in reducing infections 
[17, 18]. Among the implemented NPIs, stay-at-home 
orders were announced to encourage self-isolation of all 
population to reduce potential contacts with infectious 
individuals. In parallel, quarantine was used to separate 
individuals who have been exposed to COVID-19 from 
others, which prevents spread of COVID-19 that can 
occur before a person knows they are infected. During 
the early days of the COVID-19 pandemic, case isola-
tion and contact tracing were employed to contain the 
outbreak; however, for an infectious disease whose infec-
tiousness begins before symptoms appear, the effective-
ness of isolating cases and tracing contacts is limited 
[19–21]. Indeed, a study found that, for the Lombardy 
ICU network in Italy, strict self-quarantine measures may 
be the only possible way to contain the spread of infec-
tion [22]. As a result, understanding the impact of self-
isolation induced by stay-at-home orders and quarantine 
of SARS-CoV-2 contacts on COVID-19 spread and the 
intensity of these measures required to contain an out-
break is critical for planning control measures by govern-
ments and public health authorities.

In this study, we developed a mathematical model to 
estimate the effect of stay-at-home and quarantine on 
suppressing COVID-19 spread in four cities: Wuhan in 
China, New York City in the US, Milan in Italy, and Lon-
don in the UK. Those cities experienced early outbreaks 
of COVID-19 and all enforced strict interventions to 
control the transmission of SARS-CoV-2. We incorpo-
rated components of self-isolation and quarantine into 
a classical susceptible-exposed-infected-removed (SEIR) 
model, and calibrated the model to confirmed cases in 
each city during the early phase of the pandemic using 
a data assimilation method. We estimated time-varying 
key epidemiological parameters before lockdown in each 
city, and evaluated the impact of the isolation rates of 
susceptible, exposed and undetected infected popula-
tions on disease transmission. Particularly, we estimated 
the required minimal self-isolation and quarantine rates 
of those populations to reduce the effective reproduc-
tive number below 1 at the beginning of lockdown. We 
further simulated counterfactual outbreaks within 40 

days following lockdown, assuming no stay-at-home and 
quarantine were implemented in those cities, and esti-
mated the averted cases attributed to these two meas-
ures. Overall, stay-at-home and quarantine measures 
have effectively prevented 3,589,622, 3,281,480, 629,046 
and 2,452,750 reported cases during this 40-day period 
in Wuhan, New York, Milan, and London, respectively. In 
other words, without these two measures, the cumulative 
cases during the 40-day period could be 71, 21, 41, and 99 
times higher than the reported cases in these four cities.

Methods
Model
We used a modified SEIR model to depict the transmis-
sion of SARS-CoV-2 in a location with quarantine meas-
ures. The model dynamics is shown in Fig. 1. Specifically, 
S, E, Sq , Eq , Ir , Iu , Iq and R represent susceptible, exposed, 
self-isolated susceptible, quarantined exposed, reported 
infected, unreported infected, isolated infected and 
removed (recovered or dead) populations. A susceptible 
individual can be infected by a reported infection with 
a transmission rate β or an unreported infection with a 
transmission rate µβ where µ ∈ [0, 1] . Note we assume 
undocumented infections are less contagious than con-
firmed cases, as indicated in previous studies [23–26]. 
Exposed individuals become contagious after a mean 
latency period of L days. A fraction of infected popula-
tion, α , is ascertained as confirmed cases. Infected indi-
viduals recover or die after a mean infectious period of 
D days.

We assume susceptible population is self-isolated by 
a rate q0 , representing the effect of stay-at-home orders. 
Quarantine of SARS-CoV-2 contacts has little impact on 
the overall self-isolation rate of susceptible population 
during the early pandemic as the percentage of exposed 
contacts is negligible compared to the total population. 
For instance, in a city with millions of residents, a few 
thousand exposed contacts only account for less than 
0.1% of total population. We therefore neglect the effect 
of quarantine of SARS-CoV-2 contacts on susceptible 
population. We assume the self-isolation rate q0 for sus-
ceptible population does not depend on infectious pop-
ulation as the proportion of total population who have 
contacts with infections is negligible. This assumption 
simplifies the model structure and does not significantly 
affect the results. For exposed individual, we assume the 
quarantine rate is q1 , representing the effect of quaran-
tine. Undocumented infections are isolated following a 
different isolation rate q2 to reflect the differential percep-
tion of infection risk as they may have mild symptoms. In 
total, we define three separate rates q0 , q1 and q2 for sus-
ceptible, exposed, and undocumented infections respec-
tively. Confirmed cases are isolated following an isolation 
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rate q3 after they become infectious. Self-isolated sus-
ceptible people are released from self-isolation after an 
average of Q days. We assume self-isolated or quaran-
tined individuals (susceptible, exposed or infected) do 
not participate in disease transmission. The transmission 
dynamics is described by the following equations:

Using model equations, we compute the effective repro-
ductive number, Re , i.e. the average number of new 
infections caused by a single infected individual in a pop-
ulation with partial immunity, as

In model simulations, we deterministically integrate 
equations using the 4th-order Runge-Kutta method.

Model calibration before lockdown
We calibrated the transmission model to daily con-
firmed cases in each city using a data assimilation 
method - the ensemble adjustment Kalman filter (EAKF) 
[27]. We chose to use case data because they are avail-
able for most locations as a standard surveillance target. 
To account for case underreporting, we explicitly mod-
eled undocumented infections in our model, which can 
partially alleviate the effect of limited testing resources. 
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Hospitalization data are less impacted by underreporting; 
however, hospitalization data have a longer delay com-
pared with case data and are more biased to older and 
vulnerable population. To match infection to hospitaliza-
tion in the transmission model, an additional infection-
hospitalization rate (IHR) needs to be defined. This IHR 
may vary in different locations due to different levels of 
healthcare capacity and could further complicate the 
model.

The EAKF is a recursive filtering technique that assimi-
lates observations into a dynamic model to generate a 
posterior estimate of model state (both parameters and 
variables). Importantly, the EAKF can estimate time-var-
ying parameters, as model parameters are updated daily 
once new information of confirmed cases is available. 
This capability is critical for this study because model 
parameters such as the transmission rate and ascertain-
ment rate may change over time due to varying control 
measures and testing availability. In this study, we esti-
mated the posterior distributions of model parameters 
for each day, reflecting the shifting situation during 
the early pandemic. The EAKF has been widely used in 
numerical weather prediction [27, 28] as well as inference 
and forecasting of infectious diseases such as influenza 
[29–33], COVID-19 [34–38], other respiratory viruses 
[39], and antimicrobial-resistant pathogens [40, 41].

The EAKF assumes a Gaussian distribution of both the 
prior and likelihood and adjusts the prior distribution to 
a posterior using Bayes’ rule. To represent the state-space 
distribution, the EAKF maintains an ensemble of system 
state vectors acting as samples from the distribution. In 
particular, the EAKF assumes that both the prior distri-
bution and likelihood are Gaussian, and thus can be fully 
characterized by their first two moments (mean and vari-
ance). The update scheme for ensemble members is com-
puted using Bayes’ rule (posterior ∝ prior × likelihood) 
via the convolution of the two Gaussian distributions. In 
the EAKF, variables and parameters are updated deter-
ministically such that the higher moments of the prior 
distribution are preserved in the posterior. Details on the 
implementation of the EAKF can be found in published 
studies [27, 42].

In the analysis, we first focus on the period before 
lockdown and stay-at-home order were announced in 
each city. For Wuhan, New York, Milan and London, we 
used daily case data reported from January 16 to January 
23, March 1 to March 19, February 25 to March 8, and 
March 6 to March 23, respectively. We collected the daily 
reported case data in the four cities (see details in Avail-
ability of data and materials). To mitigate the impact of 
possible irregular reporting during the early stage of the 
pandemic, we used a five-day moving average to smooth 
the epidemic curves. Before lockdown, confirmed cases 
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were isolated but population-level stay-at-home orders 
were not yet affected. We therefore set the self-isolation 
rate q0 as zero. To reduce the number of unknown param-
eters, we fixed several parameters estimated in previous 
studies. Specifically, the isolation rate of confirmed cases 
q3 is estimated as the reciprocal of the delay from the 
onset of contagiousness to confirmation. For instance, 
the confirmation delay in Wuhan was estimated to be 
6-10 days [2, 43]; we therefore set the range of q3 to be 
[0.1, 0.16] for Wuhan. Confirmation delays in New York, 
Milan and London were also reported in previous stud-
ies [21, 43–45]. We used these estimates to define q3 in 
these cities. Certain exposed individuals and unreported 
infections may be quarantined before the lockdown. We 
fixed the range of quarantine rates q1 and q2 as [0.05, 0.1] 
in the model. We further fixed relative transmission rate 
µ , the mean latency period L and mean infectious period 
D as reported in other studies [2]. In model simulations 
and inference before lockdown, these parameters were 
uniformly drawn from the prior range and were fixed 
throughout the analysis. We used the model-inference 
framework to estimate two parameters: α , β . The fixed 
ranges of q1 , q2 , q3 , µ , L and D and the prior ranges of α , β 
were shown in Table 1. We used 300 ensemble members 
in the EAKF, and drew initial parameters uniformly from 
the prior ranges.

Counterfactual simulations after lockdown
We estimated the number of COVID-19 cases averted by 
stay-at-home and quarantine measures after lockdown 
using counterfactual simulations. We first employed the 
model-inference system to estimate daily posterior model 
parameters within 40 days after lockdown in each city. 
Specifically, we estimated the daily transmission rate β , 
ascertainment rate α , self-isolation rate q0 , quarantine 
rates q1 and q2 , isolation rate of confirmed cases q3 , rela-
tive transmissibility of undocumented infections µ , mean 
latency period L, and mean infectious duration D. We 

further fixed the average length of self-isolation Q as 75 
(from January 24 to April 7), 80 (from March 20 to June 
7), 56 (from March 9 to May 3) and 48 (from March 24 to 
May 10) days for Wuhan, New York, Milan and London, 
respectively. The parameter inference was performed 
for 100 realizations independently, each with different 
initialization of the ensemble members in the EAKF, to 
obtain parameter combinations that fit the observed case 
data. Note, we estimated the time-varying parameters 
after lockdown to reflect changing control measures and 
testing practice.

We then plugged in the estimated daily parameters and 
ran model simulations for 40 days, for which we varied 
the self-isolation rate q0 and quarantine rates q1 and q2 . 
In counterfactual simulations, we tested the following 
two scenarios. In the first, we set q0 = q1 = q2 = 0 after 
lockdown, assuming no stay-at-home orders and quar-
antine were implemented. In this analysis, we focus on 
the combined effect of stay-at-home orders and quaran-
tine. In the second, we only set q0 = 0 and keep q1 and q2 
unchanged as the estimated values. This counterfactual 

Table 1  Prior parameter range for Wuhan, New York, Milan, and 
London before lockdown

Wuhan New York Milan London

q1 (0.05,0.1) (0.05,0.1) (0.05,0.1) (0.05,0.1) Fixed

q2 (0.05,0.1) (0.05,0.1) (0.05,0.1) (0.05,0.1) Fixed

q3 (0.1,0.16) (0.07,0.11) (0.12,0.5) (0.1,0.16) Fixed

β (1,2) (1,2) (1,2) (1,2) Estimated

µ (0.45,0.65) (0.45,0.65) (0.45,0.65) (0.45,0.65) Fixed

α (0.02,0.12) (0.02,0.12) (0.02,0.12) (0.02,0.12) Estimated

L (3,5) (3,5) (3,5) (3,5) Fixed

D (3,5) (3,5) (3,5) (3,5) Fixed

Table 2  Posterior parameter estimates of Wuhan, New York, 
Milan, and London before lockdown

Wuhan New York Milan London

β 1.40 1.78 1.74 1.74

α 0.074 0.086 0.074 0.076

Re 2.25 2.89 2.70 2.80

95% CI (1.61,3.07) (2.13,3.69) (1.91,3.56) (2.14,3.54)

Fig. 1  Dynamics of the transmission model. The compartments 
S, E, Ir , Iu and R represent susceptible, exposed, reported infected, 
unreported infected and removed populations. Sq , Eq and Iq are 
susceptible, exposed and infected individuals under quarantine. q0 is 
the self-isolation rate of susceptible persons; q1 is the quarantine rate 
of exposed persons; q2 is the quarantine rate of unreported infections; 
and q3 is the isolation rate of confirmed cases. β is the transmission 
rate of SARS-CoV-2, L is the mean duration of latency period, D is the 
mean duration of infectious period, and Q is the average length of 
self-isolation
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simulation estimates the effect of stay-at-home orders. 
The counterfactual simulations can inform the number 
of COVID-19 cases averted by stay-at-home orders and 
quarantine measures. Note in counterfactual simulations, 
we only lifted stay-at-home and quarantine for suscep-
tible, exposed, and unreported infections. Other model 
parameters, such as the time-varying transmission rate 
and ascertainment rate, remain the same as estimated in 
the model.

Results
Epidemiological characteristics before lockdown
Using the model-data assimilation framework, we esti-
mated the posterior epidemiological parameters in the 
four cities before lockdown (see Table  2). The posterior 
fitting agrees well with observed daily cases, as shown 
in Figure  2. Before lockdown, the number of new cases 
increased rapidly during the study period, and most 
data points fall within the 95% CI. The estimated effec-
tive reproductive number Re is generally in line with 
previous estimates [5]. New York has the highest esti-
mated Re = 2.89 , followed by London ( Re = 2.80 ), Milan 

( Re = 2.70 ) and Wuhan ( Re = 2.25 ). Only 8.6% infections 
were estimated to be confirmed in New York, agree-
ing with previous modeling results [35] and surveys of 
healthcare-seeking behavior [46] and seroprevalence 
[47]. For Wuhan, a seroprevalence study found that the 
ascertainment rate before April 2020 was about 6.8% [48], 
which is close to our estimate of 7.4%. We also estimated 
the ascertainment rates in Milan and London to be 7.4% 
and 7.6%, respectively. Serological surveys in Milan [49] 
and London [50] resulted in 7.1% and 7.1% ascertainment 
rates, generally matching our estimates.

Impact of stay‑at‑home and quarantine rates on COVID‑19 
spread
We use model simulations to examine the minimal self-
isolation rate q0 and quarantine rates q1 and q2 required 
to reduce Re below one. Estimates of these threshold 
values are important from a public health point of view. 
First, these two rates can be changed by the compliance 
with policies. If necessary, local governments can enforce 
stricter policies and adopt more effective contact trac-
ing to increase the stay-at-home and quarantine rates 

Fig. 2  Model fitting for a Wuhan from January 16 to January 23, (b) New York from March 1 to March 19, c Milan from February 25 to March 8, and 
d London from March 6 to March 23. The orange star symbol represents reported case number, the blue curve is the mean posterior fitting using 
the EAKF, and the gray region shows the 95% CI
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to reduce Re below one. Second, in settings where these 
two rates cannot be modified, the threshold can indicate 
whether it is possible to contain the outbreak through 
stay-at-home and quarantine alone. The threshold values 
can be used to assess the controllability of the disease.

We initialized the transmission model using model 
states and parameters inferred on the last day before 
lockdown (as shown in Table 2), varied self-isolation rate 
q0 (caused by stay-at-home orders) and the quarantine 
rates q1 (the quarantine rate of exposed individuals) and 
q2 (the quarantine rate of unreported infections), and ran 
model simulations until the outbreak stops. We exam-
ined the effects of different combinations of self-isolation 
and quarantine rates on the effective reproductive num-
ber, the duration of outbreak, the attack rate, and peak 
timing. For the ease of visualization in 2D plots, we fixed 
one parameter and varied the other two in model simu-
lations. The choice of the fixed parameter values is arbi-
trary and does not impact the qualitative results.

Figure  3 shows the impact of quarantine rates q1 and 
q2 on the effective reproductive number Re on the first 
day of model simulation for fixed self-isolation rates 
q0 = 0 (solid lines) and q0 = 0.1 (dash lines). The figure 
shows the combinations of q1 and q2 that lead to Re = 1 
in the four cities. The results were obtained for q3 set as 
in Table 1, i.e. the same isolation rate of confirmed cases 
as before lockdown. If susceptible individuals are not 
self-isolated (i.e., no stay-at-home orders) and control 

measures on confirmed cases remain the same after 
lockdown, quarantining only unreported infections is 
not sufficient to contain the outbreak in New York and 
London - even with q2 = 1 , the effective reproductive 
number Re is still above one. For Wuhan and Milan, it 
is possible to reduce Re below one through the quaran-
tine of only undetected infections, but the majority of 
undocumented cases need to be quarantined quickly ( q2 
is close to 1). In reality, this is very challenging because 
rapid testing is not widely available and the turnaround 
time of PCR testing is too long to support timely quar-
antine. As a result, it is necessary to self-isolate suscep-
tible population in order to control the outbreak. Model 
simulations also indicate that, for q0 = 0.1 , self-isolation 
of susceptible population can substantially reduce the 
required quarantine rates q1 and q2 for Re < 1 , suggesting 
that stay-at-home orders are more effective in reducing 
effective reproductive numbers.

We performed similar analyses by fixing q1 (Fig. 4) and 
q2 (Fig. 5). In order to reduce Re below 1, undocumented 
infections or exposed individuals need to be quarantined 
with a much faster quarantine rate than the self-isolation 
of susceptible population. This pattern consistently holds 
across all four cities. The required self-isolation rate of 
susceptible population q0 decreases with increased quar-
antine rate of undocumented infection q2 and exposed 
individual q1 . In order to minimize the population size 
under self-isolation and reduce the disturbance on 
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society, the best control strategy should be to isolate con-
firmed cases and individuals who are exposed to infec-
tions (possible undocumented infections) as soon as 
possible so that the required self-isolation rate of suscep-
tible population could be lower.

We further explore the impact of self-isolation rate q0 
and quarantine rates q1 and q2 on several characteristics 
of the outbreak, including the outbreak duration, attack 
rate, and peak timing. Here the outbreak duration is 
defined as the number of days it takes for daily cases to 
drop below 5 after the lockdown measures are enforced; 
the attack rate is the percentage of population infected 
with SARS-CoV-2 by the time daily cases fall below 5; 
and peak timing is the number of days between lockdown 
and the day with the highest reported daily case. We ran 
model simulations using different combinations of self-
isolation rate q0 and quarantine rates q1 and q2 starting 
from lockdown with other parameters set as in Tables 1, 
2, until the daily case number falls to 5.

We first fixed the self-isolation rate q0 at 0.03 and varied 
quarantine rates q1 and q2 . Simulation results are shown 
in Fig.  6. The outbreak duration is maximized for the 
combinations of q1 and q2 that lead to Re = 1 . For Re > 1 , 
the outbreak depletes susceptible population and stops 
due to herd immunity; for Re < 1 , the outbreak dies out 
as the low secondary infection rate cannot support self-
sustained transmission, leaving the majority of popula-
tion susceptible. At the critical state Re = 1 , the outbreak 

would linger for a long period until herd immunity stops 
disease spread. Peak timing also follows the same pat-
tern, as shown in the right column of Fig. 6. The outbreak 
duration and peak timing is shorter in cities with higher 
Re before lockdown. Attack rate increases with lower 
rates q1 and q2 . Without control, over 20% population in 
Wuhan would be infected, while 50% population in the 
other three cities. We repeated the same analysis for fixed 
q1 = 0.1 (Fig. 7) and q2 = 0.1 (Fig. 8).

Estimating the averted cases due to quarantine measures
We ran counterfactual simulations starting from the 
date of lockdown in each city assuming no stay-at-
home and quarantine measures were implemented 
( q0 = q1 = q2 = 0 ). We compare the counterfactual 
simulation outcomes with observed cases numbers in 
Fig. 9. Without quarantine measures, the outbreak would 
get out of control and result in massive disease spread. 
In total, we estimated that the quarantine measures have 
averted 3,589,622, 3,281,480, 629,046 and 2,452,750 con-
firmed cases in Wuhan, New York, Milan, and London 
during the 40-day period after lockdown. In other words, 
the cumulative case number would be 71, 21, 41 and 
99 times higher than the reported number during this 
period in Wuhan, New York, Milan, and London. These 
counterfactual simulations indicate that strict stay-at-
home and quarantine measures are essential to control 
the spread of COVID-19 during the early phase of the 
pandemic.

In addition, we ran counterfactual simulations in which 
self-isolation of the susceptible population is not enacted, 
that is, q0 = 0 , and other parameters remain unchanged 
as estimated. The results showed that, compared with 
the counterfactual scenario that quarantine is in place 
but stay-at-home is not effected, 570,696 confirmed 
cases were averted by self-isolation in Wuhan, 283,020 
in New York, 21,255 in Milan, and 81,737 in London. 
Compared with the results in Fig. 9, the averted cases are 
much lower. This indicates that stay-at-home orders need 
to work in synergy with quarantine to effectively limit 
COVID-19 spread.

Conclusions
In this study, we developed an SEIR-type disease trans-
mission model to evaluate the impact of stay-at-home 
and quarantine measures on COVID-19 spread in four 
cities that experienced early large-scale outbreaks - 
Wuhan, New York, Milan and London. Using the trans-
mission model in conjunction with data assimilation 
techniques, we estimated key epidemiological param-
eters in each city before lockdown. We examined the 
impact of stay-at-home and quarantine on COVID-19 
spread after lockdown by adjusting self-isolation and 
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obtained for q2 = 0.1 , while the dash lines are the results for q2 = 0.3 . 
Other parameters are set as in Tables 1, 2
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quarantine rates in counterfactual simulations. We 
found that quarantine of susceptible population is nec-
essary to contain the outbreak. Self-isolation of sus-
ceptible population induced by stay-at-home orders 
is more effective in reducing effective reproductive 
numbers Re . Variation in self-isolation and quarantine 

rates can also considerably affect the duration of out-
breaks, attack rates and peak timing. We generate 
counterfactual simulations to estimate effectiveness of 
stay-at-home and quarantine measures. Without these 
two measures, the cumulative confirmed cases could 
be much higher than reported numbers within 40 

Fig. 6  Impact of quarantine rates q1 and q2 on the outbreak duration, attack rate, and peak timing. The self-isolation rate q0 is set as 0.03. The first 
column shows the duration of the outbreak, i.e., the number of days it takes for daily cases to drop below 5 after the lockdown measures are 
enforced; the second column shows the attack rate by the time when daily cases fall below 5; the third column shows peak timing of daily cases 
after lockdown, defined as the number of days between lockdown and the day with the highest reported daily case. Each row corresponds to one 
city
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days after lockdown in Wuhan, New York, Milan, and 
London.

There are several limitations in the study. First, we 
neglected the effect of quarantine of SARS-CoV-2 con-
tacts on the susceptible population. In reality, the num-
ber of exposed susceptible individuals may increase with 
the number of infectious individuals. However, as only a 

small fraction of susceptible individuals have close con-
tacts with infectious persons during the early pandemic, 
we believe this model simplification does not significantly 
affect our results. Second, we did not explicitly consider 
contact tracing efforts implemented after lockdown. The 
contact tracing capacity was limited at the beginning of 
the pandemic, and the effect of contact tracing can be 

Fig. 7  Impact of self-isolation rate q0 and quarantine rate q2 on the outbreak duration, attack rate, and peak timing. The quarantine rate q1 is set 
as 0.1. The first column shows the duration of the outbreak, i.e., the number of days it takes for daily cases to drop below 5 after the lockdown 
measures are enforced; the second column shows the attack rate by the time when daily cases fall below 5; the third column shows peak timing 
of daily cases after lockdown, defined as the number of days between lockdown and the day with the highest reported daily case. Each row 
corresponds to one city
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implicitly represented by elevated ascertainment rate. 
Thirdly, we assume model parameters in counterfactual 
simulations such as the transmission rate and ascertain-
ment rate remain the same as estimated using real-world 
data. However, human behavior may change in response 
to large-scale local outbreaks. Our counterfactual results 
are therefore conditioned on the idealized assumption 

that population behavior does not change except self-
isolation and quarantine rates. Lastly, human behaviors 
and cultures vary in different counties and could impact 
the compliance with control measures. In this study, we 
focused on four metropolitan areas in developed settings. 
Results in developing countries may be different given 
potential differing behaviors and cultures.

Fig. 8  Impact of self-isolation rate q0 and quarantine rate q1 on the outbreak duration, attack rate, and peak timing. The quarantine rate q2 is set 
as 0.1. The first column shows the duration of the outbreak, i.e., the number of days it takes for daily cases to drop below 5 after the lockdown 
measures are enforced; the second column shows the attack rate by the time when daily cases fall below 5; the third column shows peak timing 
of daily cases after lockdown, defined as the number of days between lockdown and the day with the highest reported daily case. Each row 
corresponds to one city
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Fig. 9  Counterfactual simulations of outbreaks in Wuhan, New York, Milan and London assuming no stay-at-home and quarantine measures. 
Simulations were performed using posterior model parameters estimated each day in the four cities within 40 days after lockdown, with the 
self-isolation rate q0 = 0 and quarantine rates q1 = q2 = 0 . The vertical dash lines show the starting dates of counterfactual simulations. The 
orange stars are the observed daily case numbers. The blue curve is the mean posterior fitting using the EAKF. Blue boxes show the median 
and interquartile of counterfactual simulations, and whiskers show 95% CI. The solid red lines are the median of counterfactual simulations. 
Counterfactual simulations were performed for 100 realizations using independently estimated model parameters
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