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Abstract 

Background:  Although previous epidemiological studies have examined the potential risk factors that increase the 
likelihood of acquiring Helicobacter pylori infections, most of these analyses have utilized conventional statistical mod-
els, including logistic regression, and have not benefited from advanced machine learning techniques.

Objective:  We examined H. pylori infection risk factors among school children using machine learning algorithms to 
identify important risk factors as well as to determine whether machine learning can be used to predict H. pylori infec-
tion status.

Methods:  We applied feature selection and classification algorithms to data from a school-based cross-sectional 
survey in Ethiopia. The data set included 954 school children with 27 sociodemographic and lifestyle variables. We 
conducted five runs of tenfold cross-validation on the data. We combined the results of these runs for each combina-
tion of feature selection (e.g., Information Gain) and classification (e.g., Support Vector Machines) algorithms.

Results:  The XGBoost classifier had the highest accuracy in predicting H. pylori infection status with an accuracy of 
77%—a 13% improvement from the baseline accuracy of guessing the most frequent class (64% of the samples were 
H. Pylori negative.) K-Nearest Neighbors showed the worst performance across all classifiers. A similar performance 
was observed using the F1-score and area under the receiver operating curve (AUROC) classifier evaluation metrics. 
Among all features, place of residence (with urban residence increasing risk) was the most common risk factor for H. 
pylori infection, regardless of the feature selection method choice. Additionally, our machine learning algorithms iden-
tified other important risk factors for H. pylori infection, such as; electricity usage in the home, toilet type, and waste 
disposal location. Using a 75% cutoff for robustness, machine learning identified five of the eight significant features 
found by traditional multivariate logistic regression. However, when a lower robustness threshold is used, machine 
learning approaches identified more H. pylori risk factors than multivariate logistic regression and suggested risk fac-
tors not detected by logistic regression.

Conclusion:  This study provides evidence that machine learning approaches are positioned to uncover H. pylori 
infection risk factors and predict H. pylori infection status. These approaches identify similar risk factors and predict 
infection with comparable accuracy to logistic regression, thus they could be used as an alternative method.
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Introduction
Helicobacter pylori is a gram-negative bacterium that 
resides in the stomach and can cause inflammation lead-
ing to long-term effects, such as gastric ulcers, cancer, 
and lymphoma of the stomach mucosal linings [1–3]. 
The approximate global prevalence of H. pylori infection 
is 50%, but infection rates vary between developed and 
developing countries, often ranging between 20–80%, 
with developing countries having higher infection 
rates [1–5]. Previous research and analysis of H. pylori 
prevalence in populations have examined common risk 
factors that increase the likelihood of acquiring the 
bacteria. Some of the most commonly identified risk 
factors across various studies in different geographic 
populations are larger family size, less education, lower 
socioeconomic status, less frequent hygiene prac-
tices, and lower sanitation with specific emphasis on 
sources of water and defecation [4, 6–10]. The extent 
to which common risk factors influence the acquisi-
tion of H. pylori can depend on cultural and geographi-
cal circumstances, giving rise to the large variation in 
prevalence globally [3, 11, 12]. Although, majority of H. 
pylori infected individuals do not show clinical symp-
toms[13], untreated infections could last a lifetime lead-
ing to chronic gastritis, which can develop into ulcer 
and carcinoma[14]. This necessitates the need for early 
diagnosis and proper disease therapy. Understanding 
the occurrence of H. pylori infection and its interaction 
with socio-demographic factors is important in devel-
oping an effective H. pylori infection risk management 
tools tailored to local public health policy.

Our group’s recent study also identified a set of soci-
odemographic risk factors associated with H. pylori 
infection among children in Ethiopia [15]. These stud-
ies have utilized conventional statistical models such 
as logistic regression to identify risk factors and have 
not benefitted from advanced techniques from machine 
learning. While logistic regression is a rudimentary 
form of machine learning, it is not designed to examine 
large, highly correlated sets of predictors or to elucidate 
interactions among predictors without a priori speci-
fication [16]. Additional research using flexible mod-
eling procedures that capture the complexities of the H. 
pylori risk factors is needed.

To our knowledge, no study has attempted to inves-
tigate H. pylori risk factors using an advanced machine 
learning approach. Machine learning is a branch of 
artificial intelligence based on the idea that computers 

can learn from data, identify patterns, and make deci-
sions with minimal human intervention [17]. Com-
pared with an epidemiological and statistical approach 
that requires strong data assumptions, machine learn-
ing can examine data to identify an underlying struc-
ture using an iterative process to learn from the data 
[16] and identify potential risk factors associated with 
a disease without any user input bias. Thus, using a 
diverse set of advanced machine learning algorithms 
can improve the confidence in the findings from tradi-
tional methods.

Moreover, they can also be used for their predictive 
use. In this study, we used data from a detailed Ethiopian 
school children survey to assess risk factors for H. pylori 
infection and develop predictive disease prevalence mod-
els using advanced machine learning approaches, and 
compared it with a traditional statistical approach (logis-
tic regression).

Methods
Data source and sample selection
We conducted a two-part cross-sectional survey among 
school children in the Oromia region of Ethiopia in the 
towns of Ziway and Sululta in 2016 and 2017 (Fig.  1). 
This area extends north and south by 30 km and 160 km, 
respectively, from the capital city of Addis Ababa. Five 
elementary schools, three (i.e., Laga Dima, Wasarbi, and 
Abdi Boru) from Sululta and two schools (i.e., Sher and 
Batu) from Ziway town were included in the study. Fol-
lowing written consent documentation by parents or 
legal guardians of the children, we collected demographic 
data concerning lifestyle and behavior from a total of 954 
study subjects using an interview-led questionnaire.

H. pylori detection
A more detailed description of H pylori measurements 
can be found in our previous published studies [18, 19]. 
Briefly, each participant provided a stool and blood sam-
ple for H. pylori testing. A widely used non-invasive 
rapid Helicobacter pylori (Cassette) stool antigen test 
(Diagnostic Automation Inc., USA) was used to detect 
H. pylori antigen in stool samples as indicative of recent 
infection. Additionally, a rapid antibody test was used 
to detect past or current infection in serum samples. H 
pylori positivity was defined by a positive result for either 
H. pylori antigen or antibody test for this study.

Keywords:  Machine learning, H. pylori infection, Classification, Feature selection, Logistic regression, School children, 
Ethiopia
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Machine learning algorithms
Data preprocessing
We excluded any risk factor we missed more than 5% 
of the lifestyle and behavior data. In addition, we nor-
malized data for risk factors that had continuous val-
ues and transformed factors with multiple categories 
using one-hot encoding. For the latter, one category 
for each factor was dropped to avoid multicollinearity. 
The preprocessed data included 954 samples (91 chil-
dren aged 0–5, 425 aged 6–10, and 438 aged 11–15) 
with 27 risk factors of H. pylori (Table 1).

Feature selection
We used feature selection to reduce the number of 
redundant features (H. pylori risk factors in our study) 
and, subsequently, our dataset’s dimensionality to detect 
the most important H. pylori risk factors and to improve 
the accuracy of our classifiers; machine learning algo-
rithms that utilize data to understand how given risk fac-
tors relate to disease status.

First, we used ranking-based methods Informa-
tion Gain (IG) and ReliefF (ReF) to assess each feature’s 
importance independent of the other features using 

Fig. 1  Map of Sululta and Ziway (Batu) can be located to the north and south of Addis Ababa, respectively, Ethiopia
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a scoring metric [20, 21]. Information gain (IG) uses 
mutual information between the feature and the target 
variable to calculate their mutual dependence. ReliefF 

(ReF) uses the Manhattan distance to calculate each fea-
ture’s weight by randomly selecting samples from the 
dataset and estimating the distance between the nearby 
samples and their classes (H. pylori infection status in our 
study). Then, we ranked features based on these scores 
and chose the top 10 or 20 features for our classification 
runs. Since these ranking-based methods do not inher-
ently have any way of discerning the interaction and con-
founding effects between risk factors, we have decided to 
remove the features beyond the 20th risk factor.

Next, we used the subset-based methods Correlation-
based Feature Selection (CFS), Minimum Redundancy 
Maximum Relevance (MRMR), Fast Correlation Based 
Filter (FCBF), and Sequential Forward Selection (SFS) 
[22–25] to find the optimal subset of features to predict 
H. pylori status. CFS, MRMR, and FCBF aim to find sub-
sets of the feature space highly correlated to the target 
variable but uncorrelated amongst themselves based on 
different metrics in order to minimize the interaction 
effects between selected features. We used symmetri-
cal uncertainty to evaluate CFS and FCBF. Our MRMR 
runs used basic scoring criteria of a linear combination 
of Shannon information terms. Finally, we specifically 
used a variant of SFS called Sequential Floating Forward 
Selection (SFFS). SFFS is a wrapper-based method that 
reduces the feature space by adding features one by one, 
calculating the classifier’s performance, and using it as a 
metric to find the optimum feature subset.

Classifiers & hypertuning
We used the optimum feature subset to train a wide 
assortment of classifiers on the dataset to find which 
classifier maximized the accuracy of our  H. pylori  sta-
tus predictions and to ensure they were robust across 
various feature selection methods. Specifically, we tested: 
K-Nearest Neighbors (KNN), Logistic Regression with 
Lasso penalty (LR), Support Vector Machines (SVM), 
Random Forests (RF), Naive Bayes (NB), and XGBoost 
(XGB) [26–31]. Bagging and boosting are ensemble 
methods that either combine multiple weak estimators 
or bootstrap the dataset and aggregate the results [32, 
33]. We used boosting (with AdaBoost) and bagging to 
improve the prediction performance of our classifiers. 
The majority of the classifiers that we have used either 
inherently penalize confounding factors via regulariza-
tion or are effective at handling interactive effects.

We used accuracy, F1-score, and area under the 
receiver operating characteristic curve (AUROC) as per-
formance metrics since they provide a complementary 
view of classifiers’ performance. Accuracy score is a bet-
ter metric if true positives and true negatives are more 
important than false positives and false negatives. In 
contrast, F1-score is better when false positives and false 

Table 1  List of risk factors (features) used in the study and the 
survey results

The reference group is the one that is bolded in the response column

Feature Response H. pylori ( +) H. pylori (−)

Residence Urban 293 (54.3%) 247 (45.7%)

Rural 50 (12.1%) 364 (87.9%)

Allergies Any allergic disease 70 (31%) 156 (69%)

No allergies 273 (37.5%) 455 (62.5%)

Parasites Any parasites found 110 (37.2%) 186 (62.8%)

No parasites 233 (35.4%) 425 (64.6%)

Cooking area Inside house 276 (33.5%) 547 (66.5%)

Outside house 67 (51.1%) 64 (48.9%)

Dewormed status Dewormed 247 (33.7%) 487 (66.3%)

Not dewormed 96 (43.6%) 124 (56.4%)

Cow Family owns cow(s) 47 (23.4%) 154 (76.6%)

No cow(s) 296 (39.3%) 457 (60.7%)

Smoking Smoker in household 10 (16.4%) 51 (83.6%)

No smokers 333 (37.3%) 560 (62.7%)

Cat No cat 257 (38.6%) 408 (61.4%)

Cat lives inside 53 (25.4%) 156 (74.6%)

Cat lives outside 33 (41.3%) 47 (58.7%)

Dog No dog 228 (40.1%) 341 (59.9%)

Dog lives inside 0 (0%) 4 (100%)

Dog lives outside 115 (30.2%) 266 (69.8%)

Electricity use Every day 273 (55.2%) 222 (44.8%)

Sometimes 11 (12.8%) 75 (87.2%)

Never 59 (15.8%) 314 (84.2%)

Floor in Home Cement 150 (36.8%) 258 (63.2%)

Wood 4 (20%) 16 (80%)

Mud 186 (35.9%) 332 (64.1%)

Other 3 (37.5%) 5(62.5%)

Waste disposal Garbage bin 80 (44.2%) 101 (55.8%)

Pit 56 (36.6%) 97 (63.4%)

Open field 26 (12.6%) 181 (87.4%)

Burn 181 (43.8%) 232 (56.2%)

Age 0–5 years 43 (47.3%) 48 (52.7%)

6–10 years 167 (39.3%) 258 (60.7%)

11–15 years 133 (30.4%) 305 (69.6%)

Family size 0–3 people 55 (34.6%) 104 (65.4%)

4–5 people 165 (35.6%) 299 (64.4%)

 > 5 people 123 (37.2%) 208 (62.8%)

Toilet Flush toilet 10 (25%) 30 (75%)

Pit toilet 325 (38.7%) 514 (61.3%)

Open field 8 (10.7%) 67 (89.3%)

Water source Piped 327 (38.3%) 526 (61.7%)

Well 12 (15.4%) 66 (84.6%)

River or rain water 4 (17.4%) 19 (82.6%)
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negatives are more crucial. Also, F1-score and AUROC 
are better metrics than accuracy when there is an imbal-
anced class distribution (H. pylori status in our study). 
Our data showed a slight imbalance in the class distribu-
tions (64% of the samples were H. pylori negative). The 
baseline accuracy was calculated using the majority class 
prevalence, which refers to H. pylori negative cases. In 
this case, our baseline accuracy was 64%. Theoretically, 
the imbalance may cause the feature selection methods 
and classifiers to be biased towards the majority class. We 
repeated our study on our dataset up-sampled with the 
Synthetic Minority Oversampling (SMOTE) technique 
which uses the k-nearest neighbors algorithm to generate 
new samples and ensure that the dataset is balanced [34].

Each classifier uses different criteria and methods to 
fit itself onto the dataset—for instance, KNN classifies 
each sample based on the distribution of its neighbors, 
while XGBoost uses gradient boosted decision trees to do 
the same—but the exact details of algorithms and their 
implementations are beyond the scope of this paper [35, 
36]. Each classifier also contains various parameters that 
need to be tuned based on the dataset to improve its per-
formance. We first found suitable hyperparameter ranges 
for each classifier by running preliminary tests. Then we 
conducted a grid search on those hyperparameters to 
find the best combination. We did not run hyperparam-
eter tuning on bagging and boosting ensemble methods 
due to the infeasible computational complexity. Thus, the 
ensemble classification was performed using the param-
eter combination for each estimator that gave the best 
classification results. For similar reasons, we did not run 
boosting with the SFFS feature selection method. Finally, 
boosting is part of the XGBoost classifier; thus, we did 
not conduct boosting with XGBoost.

Model validation
We then used tenfold cross-validation to determine the 
generalizability of the classifiers into other independ-
ent datasets. First, we split the dataset into ten different 
stratified folds, maintaining the distribution of the H. 
pylori classes across each fold. We imputed the missing 
data for each fold using an iterative imputer, which treats 
each feature being imputed as a dependent variable and 
fits a regression model based on the other features to pre-
dict the missing values [37]. Next, we selected the most 
important features using feature selection methods dis-
cussed above, then used data for those features to train 
the six classifiers for each hyperparameter combination. 
Since SFFS depends on the classifier and the fold itself, 
for the SFFS feature selection method, we ran feature 
selection with each classifier and hyperparameter combi-
nation. To make sure our results were robust, we repeated 
this tenfold cross-validation process five times. We used 

a specific seed for each repeat to ensure that the split-
ting of the dataset is the same for the SFFS and ensem-
ble runs as well. In this way, we ensured that our results 
did not vary significantly by the way we split the data. We 
reported the highest accuracy and F1 score from the five 
runs with the corresponding classifier hyperparameter 
combination and feature selection method. We also cal-
culated the AUROC score for each model using the best 
hyperparameter combination for each classifier. How-
ever, since we did not test our model on an independent 
dataset it could theoretically be overfit. Thus, we then 
repeated our study using nested cross validation. We first 
split the dataset into five subsets. In each iteration, one 
subset is used as test data and the other four are used for 
training. As mentioned earlier in this section, we then 
perform tenfold cross validation on the training data to 
select the best combination of hyperparameters for each 
classifier which is then used for evaluation on the unseen 
test data. However, nested cross validation is extremely 
computationally expensive and thus we were not able to 
run it with the SFFS feature selection method.

Clustering
We used two-dimensional hierarchical clustering to 
group the classifier and feature selection methods 
based on accuracy and F1 score [38]. We also used the 
same approach to group features and feature selection 
methods based on the frequency of each feature being 
selected in five ten-fold cross-validation runs. We pre-
sented the hierarchical clustering results as heatmaps.

Logistic regression model
We also created a logistic regression model (without 
Lasso) to compare our machine learning-based meth-
ods to the conventional model used throughout epi-
demiology. We preprocessed the dataset similar to 
the machine learning approach, removing unusable 
features, imputing values, and splitting nominal vari-
ables into different categories. We then ran two sepa-
rate regression models: a stepwise multivariate logistic 
regression model using the Akaike information cri-
terion and a univariate logistic regression model with 
each predictor. We then recorded the p-values and the 
odds-ratios for each of the regressions.

Code availability
The study’s code was written in Python and R due to 
their ease of use and advanced statistical learning 
libraries. We will make our source code available upon 
request.
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Results
Study population characteristics
In the sample of 954 children for which there were blood 
and stool sample data, 55.3% (526) were female, and 
56.6% (540) lived in urban areas. There were 91 children 
aged 0–5, 425 aged 6–10, and 438 aged 11–15. The most 
common family size was 4–5 people (48.5%). A major-
ity of families had some access to electricity (60.8%) but 
few used gas (10.9%). A majority of the children (76.9%, 
732) had been dewormed in the past six months, 30.7% 
(293) of the children had parasites detected in their sam-
ples, and 35.9% (343) tested positive (current and past) H. 
pylori infection. See Table 1 for the full survey results.

Logistic regression
Stepwise logistic regression models showed a significant 
increase in the odds of H. pylori infections among chil-
dren who had no history of deworming treatment (fea-
ture 5; AOR = 1.68, 95% CI: 1.16–2.42, p = 0.006), who 
had smokers in the house (feature 7; AOR = 2.83, 95% 
CI:1.35–6.42, p = 0.008), who had pit latrine (feature 
24; AOR = 2.34, 95% CI: 1.34–4.24, p = 0.004). A simi-
lar trend of increasing odds ratio was observed between 
infections with H. pylori and having a family size greater 
than 5 (feature 23), but this did not achieve statistical 
significance in the multivariate analyses (AOR = 1.30, 
95% CI: 0.93–1.82, p = 0.12). In contrast, families who 
reported dumping their waste in an open field (feature 
18), having a cow (feature 6), living in a rural area (fea-
ture 1), and sometimes or never using electricity (features 
12–13) were inversely associated with H. pylori infection 
(Table 2). Some features had an odds ratio of greater than 
1 in the univariate analysis but not retained the multivar-
iate analysis.

Classification model performance
Among all classifiers, the XGB classifier had the high-
est accuracy score of 77% (Fig.  2A), up 13% from the 
baseline accuracy, guessing the most frequent class (H. 
Pylori negative.) SVM, NB, and RF showed comparable 
accuracy scores with XGB. However, KNN showed the 
worst performance across all classifiers methods. The 
logistic regression model, although comparable, showed 
slightly lower accuracy than all classifiers except KNN. 
The highest F1 score of 70% was reached by both NB and 
XGB classifiers, a 16% improvement from the baseline F1 
score (Fig. 2B). The KNN classifier, again, had a relatively 
worse performance than other methods. All classifiers 
except KNN achieved similar F1 scores, regardless of 
the feature selection method used. Boosting and bagging 
methods did not significantly improve the accuracy or 
F1 score for any classifier (Additional file 1: Figs. S1 and 

S2). Figure 2C shows the model prediction performance 
using the area under the receiver operating characteris-
tics curve (AUROC). XBG, NB, RF, SVM, and LR achieve 
0.78–0.79 AUROC, slightly better than KNN’s AUROC 
of 0.76. The results from both the nested cross validation 
(Additional file  1: Fig.  S6) and on the synthetically up-
sampled dataset (Additional file 1: Fig. S7) show similar 
accuracy levels and F1 scores. We have also provided the 
confusion matrix for the most accurate classifier-feature 
selection method combination in the supplement (Addi-
tional file 1: Table S1).

H. pylori risk factors
We derived the importance of H. pylori risk factors using 
feature selection methods in addition to univariate and 
multivariate logistic regression. We reported how fre-
quently each feature (i.e., H. pylori risk factors) appeared 
in the fifty runs (five ten-fold cross-validations) of each 
feature selection method. The robustness of features 
selected across all feature selection methods is presented 
in Fig. 3 and Table 3. Additional file 1: Figs. S3, S4, and 
S5 show the robustness of each feature chosen for rank-
ing, SFFS and subset-based feature selection methods, 
respectively.

Among all features, place of residence (feature 1; with 
urban residence increasing risk) was found to be the 
most common risk factor of H. pylori infection, regard-
less of the feature selection method choice (Fig. 3). Over 
75% of all feature selection runs also included four addi-
tional risk factors: sometimes or never using electricity 
(features 12–13, with always using electricity increasing 
risk), disposing of waste in an open field (feature 18), 
and using a pit for a toilet (feature 24). Thus, using a 75% 
robustness level, machine learning approaches identi-
fied five of the eight risk factors identified by traditional 
multivariate logistic regression (Table  3 and Additional 
file  1: Table  S1). They do, however, identify three addi-
tional risk factors using a robustness level of 60%: pres-
ence of a smoker in the household (feature 7), place of 
cooking (feature 4; with cooking outside increasing risk), 
and mass deworming status (feature 5). Thus, feature 
selection methods identified seven of the eight risk fac-
tors identified by multivariate logistic regression. In mul-
tivariate logistic regression, the place of cooking (feature 
4) is not found to be significant, and having a cow (fea-
ture 6) is not selected in more than 60% of feature selec-
tion runs. Finally, by employing a 50% robustness cutoff, 
the machine learning algorithms detect four additional 
features missed by multivariate logistic regression. The 
remaining fifteen features were not considered robust 
(i.e., were chosen by less than 50% of feature selection 
runs), including: keeping the family dog outside (feature 
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Table 2  Univariate and stepwise multivariate logistic regression model of H. pylori risk factors in association with H. pylori infection in 
school children, Ethiopia

Feature Meaning H. Pylori ( +) H. Pylori (−) p-value (Uni) COR CI 95% p-value (multi) AOR CI 95%

Residence Place of residence

 0 Urban 293 (54.3%) 247 (45.7%)

 1 Rural 50 (12.1%) 364 (87.9%) 0.000 0.117 0.083–0.164 0.000 0.216 0.144–0.321

Allergy Any allergic disease

 0 No allergy 273 (37.5%) 455 (62.5%)

 1 Allergy 70 (31%) 156 (69%) 0.075 0.748 0.543–1.029

Parasite found Any parasites found

 0 No allergy 233 (35.4%) 425 (64.6%)

 1 Yes 110 (37.2%) 186 (62.8%) 0.566 1.087 0.818–1.446

Cook area Cooking area

 0 Inside house 276 (33.5%) 547 (66.5%)

 1 Outside house 67 (51.1%) 64 (48.9%) 0.000 2.075 1.430–3.009

Deworm Deworming status

 0 Deworm 247 (33.7%) 487 (66.3%)

 1 Not deworm 96 (43.6%) 124 (56.4%) 0.007 1.526 1.123–2.076 0.006 1.676 1.161–2.424

Cow Any cow

 0 No 296 (39.3%) 457 (60.7%)

 1 Yes 47 (23.4%) 154 (76.6%) 0.000 0.471 0.329–0.674 0.011 0.583 0.381–0.880

Smoking Anyone smoke?

 0 Smoke 10 (16.4%) 51 (83.6%)

 1 Non-smoke 333 (37.3%) 560 (62.7%) 0.002 3.033 1.519–6.054 0.008 2.830 1.352–6.419

Cat Do you have a cat?

 0 No 257 (38.6%) 408 (61.4%)

 1 (CatInside) Lives inside 53 (25.4%) 156 (74.6%) 0.001 0.539 0.381–0.764

 2 (CatOutside) Kept outside 33 (41.3%) 47 (58.7%) 0.652 1.115 0.695–1.786

Dog Do you have a dog

 0 No 228 (40.1%) 341 (59.9%)

 1 (DogInside) Lives inside 0 (0%) 4 (100%) 0.998 0.000 0.000- inf

 2 (DogOutside) Kept outside 115 (30.2%) 266 (69.8%) 0.002 0.647 0.491–0.852

Elec Electricity?

 0 Everyday 273 (55.2%) 222 (44.8%)

 1 (ElecSometimes) Sometimes 11 (12.8%) 75 (87.2%) 0.000 0.124 0.064–0.239 0.007 0.363 0.167–0.734

 2 (ElecNever) Never 59 (15.8%) 314 (84.2%) 0.000 0.154 0.111–0.214 0.000 0.427 0.283–0.641

Floor Type of floor

 0 Cement 150 (36.8%) 258 (63.2%)

 1 (WoodFloor) Wood 4 (20%) 16 (80%) 0.202 0.434 0.121–1.563

 2 (MudFloor) Mud 186 (35.9%) 332 (64.1%) 0.846 0.974 0.744–1.274

 9 (OtherFloor) Others 3 (37.5%) 5(62.5%) 0.955 1.042 0.246–4.421

Waste Where do dispose 
waste

 0 Garbage bin 80 (44.2%) 101 (55.8%)

 1 (WastePit) Pit 56 (36.6%) 97 (63.4%) 0.523 0.868 0.563–1.339

 2 (WasteField) Open field 26 (12.6%) 181 (87.4%) 0.000 0.207 0.124–0.345 0.016 0.530 0.311–0.878

 3 (WasteBurn) Burning 181 (43.8%) 232 (56.2%) 0.405 1.156 0.822–1.626

Years (Age)

 0 0–5 43 (47.3%) 48 (52.7%)

 1 (6–10Years) 6 to 10 167 (39.3%) 258 (60.7%) 0.176 0.735 0.471–1.148

 2 (11–15Years) 11 to 15 133 (30.4%) 305 (69.6%) 0.002 0.492 0.314–0.772

FamSize Family Size
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11), having mud floors (feature 15), disposing of waste by 
burning (feature 19), being 6–10 years old (feature 20), or 
being 11–15 years old (feature 21).

Comparison of feature selection methods
We discovered a clear distinction between selected and 
non-selected risk factors for all ranking-based (IG and 
ReF) and subset-based (CFS, FCBF, MRMR, and SFFS) 
methods (Fig.  4). Compared to other feature selection 
methods, the SFFS method exhibits higher variation 
between feature selection runs (Fig.  4, Additional file  1: 
Fig.  S4). Among the SFFS results, KNN-accuracy and 
XGB-F1 performed differently than other SFFS results in 
terms of feature selection. These two methods selected 
more risk factors than the other SFFS runs. Using either 
accuracy or F1 score for the same classifier in SFFS runs 
results in classifier specific differences for the selected 
risk factors. For example, while the selected risk factors 
for RF-accuracy and RF-F1 are very similar, the risk fac-
tors selected for KNN-accuracy and KNN-F1 are differ-
ent. We also observe that the selected risk factors vary 
significantly depending on the ranking- or subset-based 
method used. For example, comparing ReF-10 and IG-10, 
we see that having a dog living inside (feature 10), having 
a wood floor (feature 14), having a floor made of other 

materials (feature 16), and having rain or river water as a 
water source (feature 27) were always selected by ReF-10 
but were never selected by IG-10.

Discussion
We have employed a wide range of machine learning 
tools to assess the H. pylori risk factors in our data from 
a resource-limited setting. Several previous studies have 
demonstrated that in predictive tasks, machine learning 
classifiers do not outperform logistic regression[39–41]. 
Similarly, we demonstrated that, with the exception 
K-Nearest Neighbors, all classifiers showed comparable 
prediction performance. However, we would like to point 
out that the XGBoost method performed slightly better 
than other classifiers in predicting H. pylori prevalence, a 
13% improvement over baseline accuracy. This finding is 
consistent with a previous study that found that XGB was 
more accurate than other machine learning classifiers in 
identifying HIV status using socio-behavioral-driven data 
[42].

Our finding that place of residence (feature 1) was the 
best predictor of  H. pylori  risk by all feature selection 
methods likely reflects the influence of socioeconomic 
status. Together with hygiene- and sanitation-related 
metrics like cooking area (feature 4) and having a pit 

Table 2  (continued)

Feature Meaning H. Pylori ( +) H. Pylori (−) p-value (Uni) COR CI 95% p-value (multi) AOR CI 95%

 0 0–3 55 (34.6%) 104 (65.4%)

 1 (4-5FamSize) 4 or 5 165 (35.6%) 299 (64.4%) 0.616 1.100 0.758–1.595

 2 (> FamSize)  > 5 123 (37.2%) 208 (62.8%) 0.446 1.164 0.788–1.718 0.121 1.303 0.933–1.822

Toilet

 0 Flush toilet 10 (25%) 30 (75%)

 1 (ToiletPit) Pit 325 (38.7%) 514 (61.3%) 0.109 1.738 0.885–3.415 0.004 2.340 1.337–4.244

 2 (ToiletField) Open field 8 (10.7%) 67 (89.3%) 0.027 0.328 0.122–0.881

Water

 0 Piped 327 (38.3%) 526 (61.7%)

 1 (WaterWell) Well 12 (15.4%) 66 (84.6%) 0.000 0.292 0.156–0.549

 2 (WaterNatural) River/rain water 4 (17.4%) 19 (82.6%) 0.051 0.339 0.114–1.004

HPYLORI 343 (36%) 611 (64%)

(See figure on next page.)
Fig. 2  Average H. Pylori prevalence prediction accuracy and F1- scores of machine learning classifiers using various feature selection methods. 
Maroon and blue colors represent high and low accuracy (A), and F1 score (B), respectively. The numbers within each cell indicate the accuracy/
F1-score of each classifier-feature selection method pair. KNN indicates K-Nearest Neighbors: SVM, Support Vector Machines; XGB, XGBoost; LR, 
Logistic Regression; NB, Naive Bayes; and RF, Random Forests. FULL indicates all risk factors are used. IG indicates Information Gain: ReF, ReliefF; 
MRMR, Minimum Redundancy Maximum Relevance; CFS, Correlation-based Feature Selection; FCBF, Fast Correlation Based Filter; and SFFS, 
Sequential Floating Forward Selection. The numbers -10 and -20 indicate the number of risk factors selected for the ranking-based feature selection 
methods. C The Receiver Operating Characteristic (ROC) curves of six classifiers (using their best hyperparameter combination) were obtained when 
they were used to predict H. pylori infection using a subset of risk factors selected through IG-20 feature selection method. The area under the ROC 
curve (AUROC) for KNN was 0.76, 0.79 for NB, and 0.78 for the other classifiers. The X-axis represents the False Positive Rate (1-Specificity) whereas 
the Y-axis represents the True Positive Rate (Sensitivity)



Page 9 of 14Tran et al. BMC Infectious Diseases          (2022) 22:655 	

Fig. 2  (See legend on previous page.)
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toilet (feature 24), these findings corroborate previous 
epidemiological findings that suggest socioeconomic fac-
tors, hygiene, and sanitation are important predictors 
of H. pylori infections [43, 44].

Among the factors that increase the risk of having H. 
pylori infection, not having any smokers in the house 
seemed counter-intuitive, as having smokers in the house 
is often associated with disease susceptibility. However, 
in a setting like Ziway, Ethiopia, having smokers in the 
house might indicate that the family is in a good finan-
cial position and, therefore, better living conditions. 
Historically, smoking tends to be adopted by the socio-
economically advantaged classes before moving onto the 
disadvantaged groups and a positive association between 
smoking and socioeconomic status has been found in 
study sub-Saharan Africa [45]. Similarly, very low daily 
electricity consumption and living in a rural area appear 
to decrease the risk of H. pylori infection. However, we 
know that low electric consumption and rural residence 
usually do not indicate good socioeconomic standing. For 
example, a study has shown that one of the most signifi-
cant determinants of energy consumption is household 
expenditure levels [44]. As such, we might need closer 
examination into the population we study. It is possible 

that most of the samples in our dataset from urban areas 
may be living in cramped, crowded slums, which exacer-
bate the likelihood of catching diseases. If that is the case, 
having access to and using electricity might merely be a 
good predictor of their social-economic status.

In this study, the traditional stepwise multivariate 
logistic regression analysis identified eight risk factors 
for  H. pylori  infection. In contrast, the machine learn-
ing algorithms identified five out of eight significant 
risk factors using a 75% robustness cutoff. However, by 
adjusting the robustness cut off value, machine learn-
ing algorithms capture nearly all the eight risk factors 
identified by the multivariate logistic regression, as well 
as several risk factors that were missed by the multivari-
ate logistic regression but reported in other studies [46, 
47]. Some of these features have been studied before: for 
example, contact with pet cats were found to be a sta-
tistically significant risk factor associated with H. pylori 
in children in Argentina [46]. Moreover, if a household 
keeps a cat outside then it might be indicative of the 
availability of space inside their house. Previous studies 
have shown that when pet ownership is positively cor-
related with socioeconomic status, it is also inversely 
correlated with prevalence of H. pylori[47]. Similarly, 

Fig. 3  The relative importance of  H.pylori risk factors based on all feature selection methods. X-axis indicates the H. Pylori risk factors, summarized 
in Table 1. Y-axis indicates the average probability of being selected across all feature selection methods. The error bars indicate one standard errors 
across all cross-validation folds
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open field defecation has also been shown to be a strong 
indicator of H. pylori status, particularly when the point 
of waste disposal is located near homes [44]. Our results 
agree with previous study argued the ability of advanced 
machine learning approaches identifying unexpected 
predictor variables and possible connections that may be 
overlooked with a predefined hypothesis [48]. Further-
more, in population-based epidemiology studies where 
diverse socio-demographic variables are collected, an 
advanced ML approach allows for evaluation of far more 
variables than would be present in traditional modelling 
approaches. Additionally, our study showed that the rel-
ative importance of risk factors depended on the feature 
selection method used to select features.

The majority of the risk factors identified through fea-
ture selection also show up as significant in the traditional 
univariate and multivariate logistic regression analysis as 
well: with a mix of odd ratios greater than and less than 
1. This suggests that the risk factors chosen by machine 
learning consist of a combination of additive and miti-
gative factors. We also see that factors that were insig-
nificant in both the univariate and multivariate cases do 
not show up as robustly in the selected features through 
machine learning approaches. Since we have repeated 
our  analysis with multiple feature selection methods, 
we have more confidence in the results since employing 
a variety of methods will likely reduce biases introduced 
by each technique. Moreover, the results from the nested 
cross validation suggests that our model is not overfit, 
and generalizable. Thus, our model can be used in simi-
lar epidemiological studies. Though, our machine learning 
methods should be retrained for different study settings.

Ultimately, by utilizing machine learning, we see that 
we might uncover patterns that may not be entirely 
apparent or add more reliability to the established meth-
ods used in epidemiology. Previous studies in other 
infectious diseases showed that using ML-based models 
identifies patients at risk of severe illness and Mortal-
ity from COVID-19 [49, 50], predict trend of tubercu-
losis incidence[51] and support of diagnosis and choice 
of appropriate antimicrobial treatment[52]. The authors 
suggested that ML models could contribute to public 
health workers or policymakers who need to identify 
high-risk populations and develop a prioritized treatment 
strategy accordingly. Similarly, the validated ML model in 
the study could be used in future databases to improve H. 
pylori risk prediction and targeted prevention efforts in 
the resource limited settings.

Limitations
We might have participation bias and reporting bias 
in our data collection process. Some missing data val-
ues were imputed using an iterative imputer, which may 
introduce some noise into the data. We have also used an 
imputer when we repeated our study on an up-sampled 
dataset. While our classifiers can beat the baseline accu-
racy in predictive capacity, it is limited by the amount 
of data we have collected. As is the case with many 
machine learning techniques, we could elucidate much 
more from our analysis if we had more data points from 
a broader range of sources. We were also restricted by 
the amount of processing power needed to run some of 
these algorithms. Given more computational resources, 
we might be able to exceed our current predictive limit. 
Finally, while machine learning methods can assist us in 

Table 3  The frequency of  H. pylori risk factors  being  chosen for 
all feature selection methods

*Results from ranking-based, subset-based, and SFFS feature selection methods 
are combined. The features are indicated in the first column. The second column 
shows the average (± 1 standard error) frequency of being picked across all 
feature selection methods and cross-validation folds. The third column shows 
the features that the multivariate logistic regression approach determined to 
be significant. Bold, italic, and bold italic highlighted numbers show features 
that occur more frequently than 75 percent, 60–75 percent, and 50–60 percent, 
respectively

Feature All* Multivariate LR

Residence 100%(± 0%) X

Allergies 43.16%(± 3.82%)

Parasites 44.42% ± (4.09%)

Cooking area 64.32% ± (3.74%)

Dewormed status 60.42%(± 4.11%) X

Cow 38.63%(± 3.58%) X

Smoking 73.26%(± 3.5%) X

Cat: lives inside 47.89%(± 3.86%)

Cat: kept outside 50.63%(± 3.91%)
Dog: lives inside 54%(± 3.84%)
Dog: kept outside 26%(± 2.78%)

Electricity use: sometimes 88%(± 2.71%) X

Electricity use: never 89.47%(± 3.17%) X

Floor in home: wood 44.32%(± 3.78%)

Floor in home: mud 27.37%(± 2.82%)

Floor in Home: Other 52%(± 3.76%)
Waste disposal: pit 44.84%(± 3.88%)

Waste disposal: open field 79.05%(± 3.2%) X

Waste disposal: burn 29.26%(± 2.98%)

Age: 6–10 years 32.63%(± 3.35%)

Age: 11–15 years 30.11%(± 3.54%)

Family size: 4–5 35.16%(± 3.47%)

Family size: > 5 46%(± 3.94%)

Toilet: pit 76.74%(± 3.73%) X

Toilet: open field 54.21%(± 3.57%)
Water source: well 44.11%(± 3.38%)

Water source: river or rain water 38.63%(± 3.45%)
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determining the importance of specific risk factors, they 
do not always show the directionality of the association.

Conclusion
Our machine learning-based approach achieved substan-
tial gains in predictive accuracy over the baseline and has 
shed light on various expected and unexpected risk fac-
tors that influence H. pylori infection.
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