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Abstract 

Background:  SmartAmp-Eprimer Binary code (SEB) Genotyping is a novel isothermal amplification method for rapid 
genotyping of any variable target of interest.

Methods:  After in silico alignment of a large number of sequences and computational analysis to determine the 
smallest number of regions to be targeted by SEB Genotyping, SmartAmp primer sets were designed to obtain a 
binary code of On/Off fluorescence signals, each code corresponding to a unique genotype.

Results:  Applied to HBV, we selected 4 targets for which fluorescence amplification signals produce a specific binary 
code unique to each of the 8 main genotypes (A–H) found in patients worldwide.

Conclusions:  We present here the proof of concept of a new genotyping method specifically designed for complex 
and highly variable targets. Applied here to HBV, SEB Genotyping can be adapted to any other pathogen or disease 
carrying multiple known mutations. Using simple preparation steps, SEB Genotyping provides accurate results quickly 
and will enable physicians to choose the best adapted treatment for each of their patients.
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Background
Genetic variation between individuals within a popu-
lation (viral, bacterial or even in humans) can be silent, 
lead to different phenotypes, diseases or death if it occurs 
in essential genes. Genetic variants can be found either at 
single nucleotide location or in more complex repartition 
schemes over a gene. Examples of viruses with complex 
genetic variants are the human papillomavirus (HPV) 
where out of over 170 closely related types, HPV-type 
16 and 18 lead to over 60% of HPV-related cancers [1, 
2] or the hepatitis B virus (HBV). HBV is a leading cause 

of liver cancer, resulting in over 880,000 deaths per year 
[3]. Divided into 10 genotypes (A–J) of which 5 cause 
over 96% of infections worldwide [respectively genotype 
C (26%), D (22%), E (18%), A (17%) and B (14%)] [4], it 
has been extensively studied that HBV genotypes have an 
influence on evolution or prognosis of the liver diseases, 
risks of complications, and responses to treatment [5–7].

While sequencing is considered the gold standard 
for the detection of all genetic variations, its cost and 
preparation time are often cited as major limitation for 
its usage [8, 9]. Isothermal amplification methods have 
been developed that are as sensitive as PCR while pro-
ducing results much faster at low cost, making them 
easy and attractive tools for small point of care settings 
or developing regions, as recently mentioned in multi-
ple reviews [10–13]. SmartAmp is an isothermal nucleic 
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acid amplification method [14] that can be combined 
with sequence-specific probes such as Exciton-Con-
trolled Hybridization-sensitive fluorescent Oligonucleo-
tides (ECHOs) for genotyping [15–17]. Called “Exciton 
probe—Eprobe” [18, 19] or “Exciton primer—Eprimer”, 
ECHOs are oligonucleotides that only emit fluorescence 
upon binding to their sequence specific targets. So far, 
SmartAmp has been used for SNP genotyping (wild-type 
vs mutant) either with one [20] or duplex Eprimer label-
ling [21–23].

We hypothesized that combining Eprimer On/Off 
fluorescence signal detection into a specific, digitized or 
binary code would enable us to distinguish and identify 
complex genetic variants. To realize this concept, we 
applied our analysis results to HBV genotyping. Histori-
cally, most HBV genotyping methods based on nucleic 
acid amplification and detection have focused on the 
highly conserved pre-S/-S gene region to distinguish 
between different HBV genotypes and sub-genotypes [5]. 
Utilizing this region, we developed our new SmartAmp 
binary code genotyping primer sets for HBV. Here, we 
describe a new usage of SmartAmp-Eprimer, combin-
ing in silico alignment of a large number of sequences 
and computational analysis to determine the smallest 
number of regions targeted for amplification, leading to 
a binary code of On/Off fluorescence signals, each code 
corresponding to a unique genotype. We named this new 
technique “SmartAmp-Eprimer Binary code Genotyping 
(SEB Genotyping)”.

Methods
HBV sequence alignments
Alignment of HBV sequences followed a protocol similar 
to the one described in [24] but revised by us for large 
data analysis. All the FASTA sequences for the S region 

of HBV sorted by genotype A to H available on the 
HBV database (HBVdb) [25] website were downloaded 
(https://​hbvdb.​lyon.​inserm.​fr/​HBVdb/​HBVdb​Datas​et?​
seqty​pe=0 accessed May 8th 2018). For each of the 8 
genotypes, all the sequences available (shown in Fig. 1a) 
were aligned to create a consensus sequence using 
MAFFT on Jalview desktop software (Jalview 2.10.4) 
and their PIDs (percentage of identity between the mul-
tiple sequences) were exported [26]. These 8 consensus 
sequences were then aligned to create a pan-genotype 
consensus sequence and PID, using the aforementioned 
method. Results are shown in Additional file 1. Using the 
alignment of 8 consensus sequences instead of the global 
alignment of over 20,000 HBV sequences permitted us to 
reduce the bias against rare genotypes (Additional file 2).

Selection of the target positions for genotyping
For each position in the pan-genotype sequence (Fig. 1b), 
the PID values were analyzed to identify nucleotides that 
were over 90% conserved within one genotype but dif-
fered between genotypes: for example, at the position 87 
genotype A is 96.43% conserved as G but genotype C is 
98.08% conserved as A. Then the minimum combina-
tion of specific nucleotide positions that permitted dis-
criminating between genotypes was manually selected. 
Because we were targeting a relatively small (681 bp) and 
highly conserved region, this was done manually using 
Excel. In our dataset, all 8 genotypes could be identified 
using 4 targeted nucleotide positions (Fig.  1c, PID per 
genotype > 90% or otherwise noted).

SmartAmp primer sets design
SmartAmp primer sets were designed as previously 
described [14, 20] to amplify the regions surround-
ing the four selected target positions. Following the 

Fig. 1  Flowchart to determine mutation positions used for genotyping. a FASTA sequences for the S region of HBV were downloaded from HBVdb 
and aligned into a sequence. b For each position a mutation score was calculated and (c) targets were selected that are > 90% conserved within 
one genotype but different between different genotypes

https://hbvdb.lyon.inserm.fr/HBVdb/HBVdbDataset?seqtype=0
https://hbvdb.lyon.inserm.fr/HBVdb/HBVdbDataset?seqtype=0
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recommendations described by Kimura et  al. [17, 27], 
Eprimers were carefully designed so that (i) the ECHO-
labeled thymidine (marked Z in Table 1) was not placed 
in the last two positions at the 5′ or 3′ end of the oligonu-
cleotide, (ii) it was not surrounded by a mismatch within 
2 bases either in the 5′ or 3′ direction, and (iii) the four 
targeted bases for genotyping (i.e., positions 87, 170, 203 
and 390–392 of our pan-genotype consensus sequence) 
were placed as the penultimate 3′-end nucleotide of 
each Eprimer for On/Off effect. Eprimers were pur-
chased from DNAFORM (Yokohama, Japan), and DNA 
oligonucleotides were purchased from Eurofins Genom-
ics (Tokyo, Japan) or Sigma-Aldrich (Tokyo, Japan). 
Sequences for standard oligonucleotides and Eprimers 
(noted oBP) are listed in Table 1.

SmartAmp reaction
Each SmartAmp reaction mixture was carried in a total 
volume of 25  µl and contained 3.2  µM FP, 3.2  µM TP, 
1.2  µM BP, 0.8  µM oBP (Eprimer), 0.4  µM OP, 1.4  mM 
dNTPs, 20  mM Tris–HCl pH 8.0 (Sigma-Aldrich), 
30  mM potassium acetate, 10  mM (NH4)2SO4 (Sigma-
Aldrich), 8  mM MgSO4 (Sigma-Aldrich), 0.1% Tween 
20, 2% Dextran (Wako, Takasaki, Japan), 5 µg acetylated 
BSA (Invitrogen, Tokyo, Japan) and 24 units of Aac DNA 
polymerase I (DNAFORM, Yokohama, Japan), and DNA 

sample. Samples for genotyping (12.5 µl/well) were pre-
pared by adding 0.6 µl of 1 M NaOH to 11.9 µl of 12,500 
copies of purified plasmid or viral DNA per well. The 
samples were heat-denatured at 95  °C for 3  min and 
chilled 3 min at 4 °C before adding 12.5 µl of the reaction 
mixture. All reactions were performed on LightCycler 
480 II (Roche Diagnostics, Mannheim, Germany). Ampli-
fication was run for 60 cycles of 1 min at 67 °C and fluo-
rescence signals were detected during each cycle using a 
custom thiazole orange filter range (excitation: 498  nm, 
emission: 580 nm). The data was transferred to Microsoft 
Excel (Microsoft, Redmond, VA, USA) for plotting.

Plasmid template sequences
Eight different pEX-A2J2 vectors containing the 681 bp-
long full HBV S-region genotype-specific consensus 
sequences (A–H) were ordered from Eurofins Genom-
ics. A map of these plasmids can be found in Additional 
file 3.

HBP25, HepG2.2.15.7 and patient serum samples
Supernatant from HBV-producing HBP25 [28] (geno-
type C) and HepG2.2.15.7 [29, 30] (genotype D) cell line 
cultures were kept at −  80  °C until use. After thawing, 
either 100 µl of 104 copies/µl HBP25 or 15 µl of 107 cop-
ies/µl HepG2.2.15.7 mixed to 85 µl of distilled water were 

Table 1  SmartAmp primer sequences

Target position Primer name Sequence (5’ → 3′) Length 
(bases)

87 TP AGA​GTC​TAG​ACT​CGT​GGT​GAC​TGC​GAA​TTT​TGG​ 33

FP AGG​ACG​CTG​AGA​TGC​GTC​CTA​CAG​GCG​GGG​TTT​TTC​TTG​TTG​AC 44

BP TCA​ATT​TTC​TAG​GGG​ 15

OP CAG​GAC​AAG​TTG​GAG​GAC​ 18

oBP AAT​CCT​CACAAZACCG​ 16

170 TP GAT​GTG​TCT​GCG​GCG​TTC​CAG​AAG​AAC​CAA​ 30

FP AGG​ACG​CTG​AGA​TGC​GTC​CTG​ACT​TCT​CTC​AAT​TTT​CTAGG​ 41

BP ATC​CTG​CTG​CTA​TGC​CTC​ATCT​ 22

OP ACG​GGC​AAC​ATA​CCTTG​ 17

oBP GCAGZCCC​CAA​C 12

203 TP TTG​TCC​TGG​CTA​TCG​CAT​AGC​AGC​AGG​ATG​AAG​AGG​A 37

FP GCA​TTC​GCC​CTC​CAA​TCA​CTC​ACC​AACC​ 28

BP TCT​GCG​GCG​TTT​TATC​ 16

OP TAG​TCC​AGA​AGA​ACC​AAC​ 18

oBP CCT​GTC​CZCCAAC​ 13

390–392 TP CTT​GAG​CAG​GAG​TCG​TGC​AGG​TGT​CCT​CTA​ATT​CCA​GG 38

FP GCG​ACT​CGC​TCC​GAA​GGT​TTT​GTA​CAGC​ 28

BP GTC​CCG​TGC​TGG​T 13

OP CTG​CTG​CTA​TGC​CTC​ATC​ 18

oBP-D GGGA​TACAZAGA​GGT​T 16

oBP GGGA​AACAZAGA​GGT​T 16
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purified using NucleoSpin® Plasma XS following the 
manufacturer instructions (Takara Bio, Shiga, Japan) and 
eluted in 30 µl final volume. After purification, the sam-
ples were diluted to 104 copies/ml.

Human serum samples (15  µl each, n = 9) were 
obtained from HBV carriers after obtaining written 
informed consent for the donation and evaluation of 
blood samples, according to The Code of Ethics of the 
World Medical Association (Declaration of Helsinki) and 
the authors’ institutional review board approval [number: 
Wako3 26–25(3)].The sample concentrationsof about 109 
copies/ml, were measured by quantitative PCR, and their 
genotypes, measured by PCR-Invader assay (outsourced 
to BML, Tokyo, Japan; assay code 03,395), are given in 
Additional file 4. As for the HepG2.2.15.7 sample above, 
15 µl of serum mixed to 85 µl of distilled water were puri-
fied using NucleoSpin® Plasma XS and eluted in 30  µl 
final volume. After purification, the samples were run on 
SmartAmp assays, with their concentration estimated to 
range from 105 to 106 copies/reaction.

Sanger sequencing
All 9 human samples were genotyped and examined for 
the presence of mutations, as described previously [19]. 
PrimeSTAR (Takara Bio) PCR reaction was performed 
following the manufacturer’s instructions and using the 
following primers: HBV_MAFFT.Bf.41-18, CCT​AGG​
ACC​CCT​GCT​CGT; and HBV_MAFFT.Br.601-16, ACA​
GAC​TTG​GCC​CCCA. Thermal cycling conditions 
included preincubation at 95  °C for 30  s, followed by 
50 cycles at 98  °C for 10  s, 60  °C for 5  s, and 72  °C for 
36 s, and extension at 72 °C for 5 min. The PCR products 
were purified using the QIAquick PCR purification kit 
(Qiagen, Tokyo, Japan) and processed for DNA sequenc-
ing using ABI PRISM BigDye Terminator version 3.1 
(Applied Biosystems, Waltham, MA, USA) with the same 
forward or reverse primer. Sequence data were generated 
using the ABI PRISM 3730 DNA Analyzer (Applied Bio-
systems). These sequences were compared to the consen-
sus genotypes sequences using Clustal Omega [31] and 
their genotypes were assessed using HBVdb online tools 
[25].

Results
Using plasmid DNA carrying the full S-region consensus 
sequence for each of the 8 HBV genotypes, we tested our 
four genotyping primer sets targeting the positions 87, 
170, 203 and 390–392 (Fig. 2a).

The expected results are a sigmoid amplification curve 
for a full-match between Eprimer and the template (sig-
nal On) or no amplification curve for a mismatch (signal 
Off). Because Eprimers bind tightly to their sequence-
specific targets and a single mutation can inhibit the 

emission of fluorescence, we determined that even one 
positive amplification signal out of multiple replicates 
should be read as positive or “On”, and there should be no 
false positive, in theory. Conversely, the fluorescence sig-
nal emitted by ECHOs is very strong and can be detected 
even at low emission levels and there should be no false 
negative within the limit of detection of the assay. The 
combination of these On/Off signals for each of the 4 tar-
geted positions provides a unique binary code permitting 
the specific genotyping of the sample tested. Comparing 
the amplification curve signals for each plasmid template 
(Fig. 2a) with the signal detection code (Table 2), we can 
see that each of the 8 samples were perfectly identical to 
the digitized On/Off pattern specific to the correspond-
ing genotype.

Of note, the SmartAmp primer set for target 203 (and 
to a lesser extent target 87) sometimes emits a low non-
specific fluorescent signal. Given that the signal intensity 
and the amplification curves of these targets are quite dif-
ferent from the expected intensity and sigmoid curves, 
they are considered as background emissions and can 
easily be interpreted as noise rather than a positive sig-
nal (Fig. 2a: genotype A target 203 and genotype H target 
87). Alternatively, a signal intensity cutoff can be set for 
an easier interpretation (cutoff at 40 RFU for target 203 
and at 3 RFU for target 87). Moreover, the melting curve 
analysis of such non-specific signals shows a different Tm 
value from the true-positive samples (Additional file5), 
confirming that the non-specific product is clearly differ-
ent from the true-positive one and thus the signal should 
be read as negative.

After successful genotyping of plasmid DNA, we 
tested our technique on natural viral DNA. The HBV25 
cell line is infected with HBV genotype C [28] and 
HepG2.2.15.7 with genotype D [29, 30] and both cell 
lines release viral particles in the cell culture super-
natant. The amplification curve patterns clearly fol-
low the On/Off binary code specific to genotype C for 
HBP25 (1010) or genotype D for HepG2.2.15.7 (1111) 
(Fig.  2b). To confirm that our method was working in 
clinical samples, we then proceeded to test our assay 
on serum samples from patients chronically infected 
with HBV. Because the number of samples was limited 
and all carried the same genotype, our study cannot 
qualify as a clinical study and should be considered a 
proof of concept. Based on preliminary results on the 
limit of detection of our primer sets (Additional file 6), 
nine human serum samples (Fig.  2c) were tested at 
1.25 × 105 copies/reaction. The positive control was our 
plasmid DNA genotype D at 1.25 × 104 copies/reaction. 
The amplification curve patterns for each sample were 
analyzed to determine their specific binary code and 
compared to the genotype given in the patient cards. 
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The samples were also subjected to Sanger sequencing 
and genotyped. The concordance between the patient 
cards (genotyped by PCR-Invader assay) and Sanger 
sequencing was 100% (9/9). Using SEB Genotyping, 
7 out of 9 samples (78%) had concordant results with 
the EIA genotyping and Sanger sequencing. One sam-
ple (SHBV-109) was ambiguous, showing the pattern 
“0111” for genotype F. Sequence analysis identified it 
as genotype C with a T > C mutation in the target posi-
tion 203 inducing this pattern. Sample SHBV-116 was 

genotyped as A by our method, as one of the two rep-
licates for target position 87 showed a clear amplifica-
tion signal, but as C by both the reference method and 
Sanger sequencing. Further post-amplification testing 
using melting curve showed the melting peak patterns 
were clearly different between this specific case and the 
positive control (Additional file  7) or other genotypes 
(Additional file 5). The amplification product obtained 
is not the same as for other samples and a melting 
curve analysis could distinctly identify a false positive.

Fig. 2  HBV genotyping detection. a plasmid DNA. Proof of concept using plasmid DNA of HBV full S-region, designed using each of the 8 
genotypes consensus sequence (A-H), n = 2. Red sigmoid amplification curves are read as “On” positive signal and no amplification are read as 
“Off” negative signal. Black curves are no template negative controls (NC). b viral DNA from cell culture supernatant. First validation using viral 
DNA purified from HBP25 (genotype C) or HepG2.2.15.7 (genotype D) cell culture supernatant, n = 4. c Human serum samples. Nine human serum 
samples were genotyped with SEB Genotyping, n = 2. + : “On”, positive signal. Δ: Discordant result between the expected negative and the observed 
positive fluorescence signal detected
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Discussion
Recent international guidelines [32] for treatment of 
HBV patients recommend HBV genotyping before initi-
ating pegylated interferon therapy, making it necessary to 
develop new, simple, convenient and accurate technolo-
gies for HBV genotyping even at community hospitals 
and clinics. Our new technique’s one-well amplification 
and detection step reduces the risk of contamination 
compared to others (e.g. PCR invader assay), and only 4 
regions need to be detected (15 for the oligonucleotides 
microarray [33]). A digital binary code for HBV detection 
was developed using lateral flow immunoassay [34], but it 
required an 8-digits binary code to distinguish between 
genotypes A-B-C and D, while our 4-digits binary code 
can distinguish 8 HBV genotypes from A to H.

We showed that our technology works well on plas-
mid DNA and on viral particles extracted from cell cul-
ture supernatant. One limitation in our experiments was 
the very small number (n = 9) and very low amount of 
patient serum samples (15 µl each) available, all of them 
being genotype C. Indeed, all samples are from Japanese 
patients with chronic HBV infection and in this popula-
tion around 80% are infected with genotype C [35–37]. 
The number is also low because we tested human sam-
ples as an example to confirm whether the expected 
theoretical pattern was obtained with our method using 
actual samples rather than to extensively validate it in 
a clinical study. While 7 out of 9 samples did show the 
expected pattern, two samples had conflicting results. 
Long-term storage of low amount of sample as well as 
the DNA extraction step increase the risk of degrada-
tion and loss of template [38], which may have caused 
the discordant results found in sample SHBV-116 or a 
rare event of primer dimerization induced this signal, as 
this pattern was only seen in one replicate of one patient 
sample while all other patient samples as well as plasmids 

and infected cell lines showed the expected amplification 
pattern. While this specific sample is not representative 
of the assay, its false positive result highlights that our 
study needs further optimization and testing at a larger 
scale before aiming for the clinical setting. Another limi-
tation of nucleic acid detection-based methods is the 
vulnerability of the signal to mutations. We have selected 
the 4 target positions to be at least 90% conserved within 
one genotype while different from other genotypes, or 
otherwise noted in Fig.  1c. Target position 203 is 86% 
conserved as T in genotype C but one of our samples 
(SHBV-109) was sequenced as carrying a minor variant 
having a T > C mutation in this position resulting in a 
miscalling as genotype F.While it is unfortunate to have 
a minor variant in such a low number of samples, the 
issue here does not lay with the SEB Genotyping method 
but with the careful selection of the target, pointing out 
that the target 203 may not be an adequate position for 
our purpose. It may be necessary for future users select-
ing their own SEB Genotyping targets to revise the cut-
off to higher than 90% to avoid such discordant results. 
Regarding the low non-specific background signal that is 
sometimes observed, one could design Eprimers with the 
labelled base within 3 nucleotides of the targeted vari-
ant, anywhere on the Eprimer sequence and not only at 
the penultimate 3′-end nucleotide, interfering with the 
binding of the Eprimer to the viral DNA, preventing the 
quenched thiazole orange moieties from separating from 
each other and effectively inhibiting the emission of fluo-
rescence in case of mismatch.

We had no information about the past treatment regi-
men of the 9 patient samples tested in this study or about 
their drug resistance status. Because the selected targets 
are highly conserved within each genotype, we believe 
that they are somehow necessary for the virus life cycle 
and the accumulation of mutations due to resistance to 
treatment would probably not influence these specific 
sites, although this point should be further studied and 
verified. If the DNA of HBV can be amplified from the 
patient serum (such as patients with persistent viremia 
or virological breakthrough), regardless of past treat-
ment, SEB Genotyping can be used. To our knowledge, 
current treatments or those in development (nucleot/
side analogs, siRNA, various inhibitors of the viral cycle 
or immunomodulators) [39] do not directly induce muta-
tions in the HBV genome and should not have any effect 
on the detection and genotyping of the virus by SEB 
Genotyping. A hypothetical therapy using CRISPR or 
other similar technology to insert a mutation specifically 
in the regions targeted in our manuscript would prevent 
SEB Genotyping from being used in its current form, 
but it would be possible to design new primers to target 
another region to solve the issue. From our point of view, 

Table 2  On/Off fluorescence signal and unique digitized binary 
codes

On/Off fluorescence signal emitted by Eprimer for each targeted nucleotide 
position (+ : On and −: Off) and the unique digitized code corresponding to 
each genotype

Genotype 87 170 203 390–392 Digitized

A  +   +  − − 1100

B − − −  +  0001

C −  +  −  +  0101

D  +   +   +   +  1111

E  +   +  −  +  1101

F −  +   +   +  0111

G  +   +   +  − 1110

H − −  +   +  0011
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only the viral load and detection limit would determine 
whether or not SEB Genotyping can be used to genotype 
patients for prediction of treatment resistance.

Conclusion
We developed a new usage for SmartAmp-Eprimer, 
making use of the strongly sequence-specific binding of 
Eprimers to their targets to create an On/Off genotyp-
ing tool specifically designed for highly variable targets. 
Regarding the application of SEB Genotyping to the 
detection of HBV genotypes, while the human serum 
sample testing results shown here permits us to foresee 
satisfying genotyping results with our new method, they 
are only a proof of concept and further testing on a larger 
number of samples as well as human sera with other 
HBV genotypes will be necessary for a better representa-
tion of the sensibility and accuracy of our assay in clinical 
settings.

Future development of SEB Genotyping would include 
the expansion to other targets to detect between various 
bacterial or viral infections, for example for the fast, on-
site distinction between the crucial variants of concern 
of the SARS-CoV-2 virus [40–42] in COVID-19 patients; 
signature mutations linked to cancer development and 
prognosis or any other highly variable part of a genome 
of interest. SEB Genotyping was optimized so that all 4 
primer sets run under the same conditions, reducing 
the technical hurdles, and could easily be adapted into a 
microfluidics chip.
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uct is amplified and the Eprimer-oBP binds to its target as is shown in the 
positive control genotype D (PC-D) while non-specific fluorescent signal 
shows a strikingly differently shaped melting curve in SHBV-116. Black 
curves are no template negative controls (NC). If amplification curves are 
hard to interpret, the melting curves can help decide if a signal should be 
considered positive or negative.
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