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Abstract 

Background:  A global pandemic has been declared for coronavirus disease 2019 (COVID-19), which has serious 
impacts on human health and healthcare systems in the affected areas, including Vietnam. None of the previous stud-
ies have a framework to provide summary statistics of the virus variants and assess the severity associated with virus 
proteins and host cells in COVID-19 patients in Vietnam.

Method:  In this paper, we comprehensively investigated SARS-CoV-2 variants and immune responses in COVID-19 
patients. We provided summary statistics of target sequences of SARS-CoV-2 in Vietnam and other countries for data 
scientists to use in downstream analysis for therapeutic targets. For host cells, we proposed a predictive model of 
the severity of COVID-19 based on public datasets of hospitalization status in Vietnam, incorporating a polygenic risk 
score. This score uses immunogenic SNP biomarkers as indicators of COVID-19 severity.

Result:  We identified that the Delta variant of SARS-CoV-2 is most prevalent in southern areas of Vietnam and it is 
different from other areas in the world using various data sources. Our predictive models of COVID-19 severity had 
high accuracy (Random Forest AUC = 0.81, Elastic Net AUC = 0.7, and SVM AUC = 0.69) and showed that the use of 
polygenic risk scores increased the models’ predictive capabilities.

Conclusion:  We provided a comprehensive analysis for COVID-19 severity in Vietnam. This investigation is not only 
helpful for COVID-19 treatment in therapeutic target studies, but also could influence further research on the disease 
progression and personalized clinical outcomes.
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Introduction
The novel coronavirus disease 2019 (COVID-19) is a 
respiratory illness caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). COVID-19 was 
first reported as an outbreak in Wuhan, China, and pro-
ceeded to spread worldwide, resulting in the declaration 

of a pandemic. The presentation of COVID-19 can range 
from mild symptoms of fever, cough, headache, muscular 
pain, nausea, and vomiting to a severe illness character-
ized by pneumonia, acute respiratory distress syndrome, 
septic shock, and multi-organ failure [1]. COVID-19 con-
tinues to spread around the world, with over 234 million 
cases and almost 4.8 million deaths as of October 4th, 
2021 according to Johns Hopkins university [2].

The ongoing fourth wave of COVID-19 infections in 
Vietnam is more serious than the previous three. Accord-
ing to the Vietnam Ministry of Health, despite drastic 
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action, Ho Chi Minh City and other southern provinces 
of Vietnam in particular were still facing complex 
COVID-19 outbreaks, with more negative impacts on 
daily life and socio-economic development than in the 
previous waves. According to the report to WHO, from 3 
January 2020 to 5:54pm CEST, 1 October 2021, Vietnam 
has 790,755 confirmed cases of COVID-19 with 19,301 
deaths.

In term of genomic organization, SARS-CoV-2 genome 
sequence is approximately 27–30 kb in length. This 
includes two large genes—ORF1a and ORF1b—which 
encode 16 non-structural proteins (NSP1–NSP16), as 
well as genes encoding structural proteins S, E, M, and 
N. One mutation, D614G, is known to have first emerged 
in the spike protein S, which is responsible for the attach-
ment of the virus to angiotensin-converting enzyme 2, 
the receptor for SARS-CoV-2 entry into human cells. This 
European origin variant was dominant in Vietnam in the 
early March 2020 [3]. There is also evidence of mutations 
in the receptor-binding domain of the S protein, which 
are of very high concern given that they can directly 
influence viral infectivity, transmissibility, and resistance 
to neutralizing antibodies and T cell responses [4]. Some 
variants rise rapidly in frequency and then collapse and 
disappear, while others rise and overtake the dominant 
strain. Examples of these include B.1.1.7 (United King-
dom variant), B.1.351 (South African variant), B.1.1.28 
(Brazilian variant), and B.1.617.2 (Indian variant) [5, 6].

In the blood atlas of COVID-19 hallmarks, Ahern et al. 
indicated several factors beneficial to the treatment of 
severe COVID-19 patients, including glucocorticoids 
(dexamethasone), inhibitors of the IL-6 receptor (tocili-
zumab/sarilumab), and Janus kinases (baricitinib) [7–11]. 
Blood-derived signatures that are associated with the dis-
ease’s severity are immune suppression, myeloid dysfunc-
tion, lymphopenia, interferon-driven immunopathology, 
T cell activation/exhaustion, and immune senescence 
[12–17]. In lung tissue, signs include neutrophil and 
macrophage infiltration, T cell cytokine production and 
alveolitis, as well as altered redox balance, endothelial 
damage, and thrombosis [18]. In addition, treatment 
of patients with corticosteroids, intravenous immuno-
globulin, and selective cytokine blockades (tocilizumab) 
have been associated with higher risk of severe disease 
[19–21].

A recent study reported 13 genome-wide significant 
loci that are associated with SARS-CoV-2 infection or 
severe manifestations of COVID-19. Several of these 
loci correspond to previously documented associations 
with lung, autoimmune, and inflammatory diseases [22]. 
Downes et al. 2021 indicates LZTFL1 as a candidate effec-
tor gene at a COVID-19 risk locus in South Asian [23]. 
Prognostic factors combined with predictive risk models 

could lead to differentiation of COVID-19 patients based 
on their risk of severe disease or death. This risk stratifi-
cation may subsequently guide better disease treatment 
and personalized outcomes [24]. A polygenic risk score 
(PRS) that aggregates the information of many common 
single-nucleotide polymorphisms (SNPs) weighted by the 
effect size obtained from large-scale discovery genome-
wide association study (GWAS) is expected to improve 
the predictive power and performance of COVID-19 risk 
assessment [25, 26]. PRS using gene-panel SNPs to calcu-
late associated risk is discussed [27].

Materials and methods
Data processing
Two workflows including a framework to align and anno-
tate SARS-CoV-2 and a predictive model for COVID-19 
patients have been developed. The first takes as input 
virus target sequence data from GISAID, the NCBI, 
and data collected in Vietnam to identify the virus 
genome sequence variants and provide summary statis-
tics of these sequences. The second integrates PRSs into 
machine learning models from two sources: (1) GWAS 
with hospitalized COVID-19 patients and (2) a combina-
tion of immune biomarker variants that are associated 
with severity status and target data.

The data downloaded from GISAID in Vietnam con-
sisted of 361 SARS-CoV-2 samples, shown in Fig.  1. 
NCBI data and data collected from Vietnamese sites con-
tained FASTA sequences of SARS-CoV-2, a summary of 
protein mutations, and patient metadata. Other datasets 
from different countries in Mekong regions were also 
downloaded. Nextclade (https://​docs.​nexts​train.​org) is a 
tool that helps to identifies the differences between tar-
get sequences and a reference sequence by Nextstrain 
to assign clades to these sequences [28]. Nextclade was 
used for alignment to reference SARS-CoV-2 Wuhan-1 
(MN908947.3), and for detecting variants and protein 
mutations on these datasets.

With data from NCBI, we have gathered 322,101 
samples collected in Q2 2021 (Quarter 2 of 2021) and 
542,275 samples collected in Q3 2021. All samples had a 
length greater than 29,000 bases and number of Ns is less 
than 300. These samples were also analyzed by Nextclade 
to find out which strains and mutations prevail among 
others.

COVID-19 data from 57,560 patients across 63 Viet-
namese provinces (approximately as of July 20, 2021), and 
other data from almost 19,924 patients were downloaded 
from public source [29]. Age, sex, status, and other meta-
data of each patient were included. The patient’s province 
of residence was a crucial parameter in the model as it 
represents the environment of coronavirus disease.

https://docs.nextstrain.org
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Dataset from Whole-Genome Sequencing from Viet-
nam in The International Genome Sample Resource 
(IGSR) [30] will be used in the study. The target dataset 
is a cohort of 99 (of 124 samples) unrelated Vietnamese 
people in the project (whole-genome sequencing with 
30×  coverage) from Kinh ethnic group (100 KHV) on 
GRCh38 [31]. The χ2 goodness-of-fit test for Hardy–
Weinberg equilibrium was used on samples with related 
individuals, and missing genotypes were filtered. We also 
use the dataset from 1000 Vietnamese Genomes Pro-
ject (1KVG), a source of genomic variants for Vietnam-
ese population by sequencing the whole genome of 1008 
unrelated healthy Vietnamese to a depth of at least 28× 
[32].

The most common method for calculating PRS is called 
clumping and thresholding (or pruning and threshold-
ing), applies two filtering steps as shown in Fig. 2. SNPs 
that weakly correlated with each other were retained. 
Clumps around SNPs were formed by using the linkage 
disequilibrium clumping procedure [33].

In PRS analyses can be characterized by the two input 
data sets: (i) base (GWAS) data: summary statistics (e.g. 
betas, p-values) of genotype-phenotype associations 
at genetic variants and (ii) target data: genotypes and 
phenotype(s) in individuals of the target sample [34]. 
We investigated the blood and lung biomarkers incorpo-
rated into the model for 100 KHV and derived PRS for all 

individuals. Based on the result, we will reconstruct PRS 
for a larger dataset and apply several machine learning 
techniques to predict severity of COVID-19 patients in 
Vietnam.

Integrating biomarkers and target data variants into PRS 
computation
GWAS summary statistics of COVID-19 patient variants 
of Hospitalized vs. not hospitalized were downloaded. 
The summary was thresholded at p = 5e − 8 as standard 
in QC of GWAS. Summary statistics of COVID-19 were 
downloaded from open source COVID-19 HGI GWAS 
(https://www.covid19hg.org). These summary statistics are 
the result of a meta-analysis of 61 studies from 24 coun-
tries, and include the weights (effect sizes) and p-values of 
13,498,845 variants, derived from a genotype-phenotype 
association study with 14,480 hospitalized patient samples 
and 73,191 control samples. GWAS QC excluded variants 
with p-value greater than 0.05. The PRS was derived for the 
training set using a pruning and thresholding method by 
Plink v1.9 [35]. The best model was selected based on R2 . 
The PRS was calculated by the below equation of Plink.

(1)PRSj =
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Fig. 1  Clade Pango lineage of 361 SARS-CoV-2 samples collected in Vietnam. The Delta variant (B.1.617.2) was the most prevalent variant as of 
GISAID data collection
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The effect size of SNP i is Si , effect allele j is Gij , the ploidy 
of the sample is P (with humans, P = 2 ), the number of 
SNPs is N, the number of non-missing SNPs in sample j 
is Mj . In addition, individual phased genotype data of 100 
KHV was from a VCF file. Standard quality controls were 
applied to the KHV VCF files, with missing genotype 
> 0.1 , Hardy–Weinberg Equilibrium P > 1e−6 , minor 
allele frequency MAF < 0.01.

Reconstructing training and testing data for machine 
learning models
The lack of direct PRS calculations for patients from Viet-
nam without a genotyping/sequencing profile posed a 
major challenge. Instead of directly predicting PRS using 
existing methods, we used a reconstruction method that 
applies a multivariate linear model to use the PRS calcu-
lations of an existing cohort (reference matrix Ref with 
PRS) with genotyping/sequencing to other cohorts, and 
showed the model can improve the prediction of severity. 
The model utilizes covariates captured age, gender, loca-
tion. The predicted PRSs for 19,924 COVID-19 patients 
were then derived by a machine learning model to predict 

severity, and that correlated well with the measurements 
from clinical readouts.

ReconstructPRS is reconstructed PRS using the summa-
tion of all fraction ( Fractionij ) measured by a covariate i 
and a sample j in the reference cohort and PRS of sample 
j in the cohort PRSjRef  . N is the number of covariates.

SNPs relevant to COVID-19 were then ranked by prob-
ability of severity according to a COVID-19-related study 
from the GWAS catalog (downloaded in August 2021 
from https://​www.​ebi.​ac.​uk/​gwas/). The data show that 
provinces are highly correlated across datasets. Since the 
sequencing data of these 19,924 patients is not public, we 
used 100 KHV results to calculate and reconstruct PRS 
for the training and testing datasets. The PRS was based 
on GWAS on GRCh38 from [36], using the pruning and 
thresholding method as mentioned previously. The pre-
dictive model showed how certain non-genetic factors 
may impact the risk of hospitalization due to the virus. 
We used three machine learning models including SVM, 

(2)ReconstructPRS =

N∑

i

Fractionij × PRS
j
Ref
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Target data
variants

Machine Learning models to
predict severity outcomes

Actor

GISAID
NCBI

VN datasets

Alignment,
Annotation
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Fig. 2  Two workflows have been developed. The first takes as input virus target sequence data from GISAID, the NCBI, and data collected in 
Vietnam (VN dataset) to identify the virus genome sequence variants and provide summary statistics of these sequences. The second integrates 
PRSs from two sources including GWAS and a combination of immune biomarker variants associated with the severity of COVID-19 patients

https://www.ebi.ac.uk/gwas/
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Random Forest and Elastic Net to predict COVID-19 
severity in Vietnamese patients based on PRS and other 
covariates such as age, sex, location, exercise, and under-
lying conditions. The training dataset contained 11,814 
patients, with status of deceased, active and recovered. 
These statuses were assigned numeric values in the 
model. To simplify the models, this was converted to a 
binary class of ‘Active’ and ‘Recovered’. Deceased patients 
were excluded.

Result
Comparative analysis for SARS‑CoV‑2 sequences 
by country using NCBI data
Figure  3 shows the percentage of SARS-CoV-2 clades 
in different countries for Q2 and Q3 2021. Overall, the 
strains in Q2 were quite diverse with common strains 
such as 20A, 20I (Alpha), 21A (Delta), 20B, 21F (Iota) but 
in the third quarter, strain 21A (Delta) predominated in 
most of the countries. In the case of the Delta variant, 
in the second quarter, a number of Asian countries such 
as India, Bahrain, Bangladesh, and Uzbekistan recorded 
the presence of this variant with a significant majority, 
while some European and American countries such as 
the US, Switzerland, Germany, this variant appeared but 
did not prevail. This indicates that the outbreak of the 

Delta variant took place first in Asian countries, then in 
European and American countries. Regarding mutations, 
our analysis results also show that the most common 
mutations in the third quarter are the typical mutations 
of the Delta variant such as S:D614G, S:P681R, S:L452R, 
S:T478,S:R158G. In summary, the data analyzed on NCBI 
show the emergence and the spread of the Delta variant 
and its mutations in recent times.

Comparative analysis for SARS‑CoV‑2 sequences 
in Vietnam and Thailand using GISAID data
In this part, 3211 FASTA sequences from Thailand in 
GISAID have been used. We compared Vietnam and 
Thailand populations as they have similar genetic char-
acteristics in other infectious diseases [37] and their 
data is widely available in Southeast Asia. Comparison 
of the number of sequences by each month shows that 
Thailand had a prevalence of Lineage B.1.1.7 (Alpha) in 
the second quarter of 2021, while Vietnam had a preva-
lence of Lineage B.1.167.2 (Delta) from May of 2021. In 
addition, lineage A.6, B.1.36.16 and AY.30, which first 
appeared in South East Asia, were detected mostly in 
Thailand (Fig. 4). The analysis is consistent with the result 
from Chookajorn et  al. 2021 [38] as the spread of the 
Alpha and Delta variants dominant over the region raised 

Fig. 3  Sequence analysis of SARS-CoV-2 among countries
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serious problems of the healthcare system. As an emerg-
ing epicenter of COVID-19 pandemic, Southeast Asian 
countries needs to take immediate collaborative actions 
to resolve these problems. More details of the analysis 
can be found in Additional file 1: Figs. S1 and S2.

Comparative analysis for SARS‑CoV‑2 sequences 
in Vietnam between hospitalized and recovered patients
In GISAID datasets, there are 361 FASTA sequences 
of SARS-CoV 2 from Vietnam. The virus variants are 
divided into 10 Clades (G,GH,GK,GR,GRY,GV,L,O,S,V). 
More details on GISAID’s clades can be found on the 
website (https://​www.​gisaid.​org/). The result of compari-
son between all clades from Vietnam shows two com-
mon variants D614G (in Spike region), P323L (in NSP12, 
known as ORF1a region) in almost all clades with prefix 
G in both groups of Hospitalized and Recovered patients. 
These 2 mutations overtake frequency of dominant 
strain. Furthermore, clade GK and GRY have more pro-
tein mutations than other clades that can be promising 
targets for for analyzing protein structure and designing 
COVID-19 vaccines or drugs (Fig. 5).

Biomarker variants and target data variants associated 
with severity on Vietnamese cohorts
We formed nine gene sets associated with sever-
ity of COVID-19 patients, as introduced 

in  "Introduction"  section. Table  1 reports the immune 
gene sets, along with the number of genes in each set and 
the number of SNPs found in 100 KHV.

Allele frequencies for SNPs of genes in each gene 
set were calculated for both 100 KHV and 1KVG 
[32]. SNP allele frequencies for all gene panels were 
highly correlated between sets (Pearson correlation 
p− value < 2.2e−16,R = 0.99 ) (Additional file  1: Fig. 
S3). 1KVG was able to detect some variants with much 
lower allele frequency compared with those frequencies 
of 100 KHV suggesting that using 1KVG (with much 
larger sample size) to increase the quality of variants, 
especially in immunogenic and drug targets used in Viet-
namese people. These variants were added to the model 
as “causal” SNPs in the computation of PRS as illustrated 
in the second workflow in Fig. 1.

Machine learning models to predict severity outcomes 
in Vietnam
The two datasets from [29] (57,560 patients split by 
province and 19,924 patients with province informa-
tion provided) were consistent in the distribution 
of patients between provinces (Pearson correlation 
p = 1.2e−15,R = 0.83 ). This is an important result as 
location and other phenotypes were used to recon-
struct PRS in the training and testing datasets for the 
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machine learning models. The data has been divided 
by training 70% and testing 30% number of samples in 
the datasets.

With an average of 100 runs, Random Forest was the 
best model with AUC = 0.81, followed by Elastic Net 
with AUC = 0.7 and SVM with AUC = 0.69 in Fig. 6.

Discussion
Statistical analysis of the SARS-CoV-2 sequences 
obtained from the NCBI indicates that the pre-
dominant virus variants at a period of time may vary 
between countries and regions of the world. If the 
severity of COVID-19 is related to the variation of 
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Fig. 5  Histogram of individuals by variants in Vietnam of Hospitalized and Recovered COVID-19 patients. Of the currently known SARS-CoV-2 
clades, clade GR was the most prevalent worldwide, followed by GV and then GH

Table 1  Immune gene sets associated with severity of COVID-19

Geneset/first author Number of genes Number of SNPs References

IL6/Gordon 87 17,653 [7]

Dexamethasone/Horby 19 5322 [9]

Immunesuppression/Bost 3 13,612 [12]

Myeloid dysfunction/Chen 4 534 [13]

Lymphopenia/Diao 69 237 [14]

Interferon immunopathology/Hadjadj 20 3724 [15]

Tcell/Mann 200 34,942 [16]

Immune senescence/SchulteSchrepping 49 12,406 [17]

Endothelial/Grant 13 1584 [18]
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the virus and the genetics of a population, then this 
association should be analyzed by country and ethnic 
group. On the other hand, the statistics for two time 
periods also show that the dominant strain in a coun-
try can change over time, the new dominant variant can 
replace existing variants. The dynamic change of SARS-
CoV-2 variants requires prediction of COVID-19 sever-
ity in patients to be performed regularly to stay up to 
date with current prevailing variants.

In this study, we used the genotype data of 99 samples 
from the 1000 Genomes Project, which were recruited 
only from Ho Chi Minh City. Although the Kinh ethnic 
group is the main ethnic group in Vietnam, accounting 
for 86% of the country’s population [39], these individu-
als may not represent the entire Vietnamese population. 
Therefore, we suggest that further investigation should 
be carried out with a 1000 Vietnamese Genomes Project 
dataset [32] recruited from 1008 unrelated individuals 
across the country, according to population distribution. 
We would expect this to increase the number of SNPs 
with allele frequency > 1% . In this dataset, the metadata 
for these 1008 samples should include not only the basic 
health indices of BMI, blood pressure, glucose level, cho-
lesterol level, and white blood cell count but also infor-
mation about any chronic or hereditary diseases, as well 
as allergy factors (foods, drugs, or insects) and lifestyle 
factors (alcohol, cigarettes). These factors also influence 
the health and resilience of an individual against SARS-
CoV-2 infection.

In addition to immune profiling, the prediction of 
COVID-19 severity in patients requires the evaluation of 
factors such as underlying disease [40], vaccination sta-
tus, and the patient’s intrinsic genetic response or adverse 
reactions to some drugs, especially some antibiotic thera-
pies used for bacterial co-infection at ICU admission 
[41]. Allergy to β-lactam drugs like penicillin or amoxicil-
lin, mainly caused by genetic factors from the interleukin 
and Human Leukocyte Antigen systems, is highly preva-
lent according to the National Centre of Drug Informa-
tion and Adverse Drug Reactions [42]. We have studied 
numerous COVID-19 drugs, especially some used in 
Vietnam for COVID-19 outpatients and their PharmGKB 
IDs [43, 44] (Dexamethasone—PA449247, Methylpred-
nisolone—PA450466, Prednisolone—PA451096, Rivar-
oxaban—PA165958360, Apixaban—PA166163740, and 
Remdesivir—PA166197141) (4109/QƉ-BYT issued by 
Vietnam Ministry of Health on August 26, 2021) that 
have allele frequency (for target gene variants in each 
drug) in 100 KHV in Additional file 1: Fig. S4. This fur-
ther investigation can be useful for the treatment benefit 
of Vietnamese patients when in hospital.

We initiated an effort to study the relationship between 
immunogenic profiling and SARS-CoV-2 infection sever-
ity by incorporating PRS based on immune gene sets. 
This approach is comprehensive as it incorporates PRS 
and immunogenic profiling of Vietnamese people. While 
providing novel scientific insights in Vietnam remains 
a major priority of this initiative study, we equally value 
learning from and collaborating with other countries in 
the Mekong regions (Cambodia, Laos, Myanmar, and 
Thailand) and other countries around the world. We 
expect to substantially contribute to the understanding of 
the variability of COVID-19 severity in Vietnam (Addi-
tional files 2, 3, 4, 5, 6, 7).

Conclusion
In this paper, we have investigated the SARS-CoV-2 
profiling in Vietnam using various data sources and a 
predictive model of COVID-19 severity, using immu-
nogenic profiling of the Vietnamese population based 
on investigation of SNPs in GWAS and metadata from 
124 Vietnamese people (KHV) in the 1000 Genomes 
Project. Machine learning models showed high accu-
racy in predicting the hospitalization status of a very 
large dataset of Vietnamese COVID-19 patients. We 
expect to improve our model by using 1KVG dataset 
with both novel and known variants in order to have a 
better understanding of the immunogenic profiling of 
Vietnamese people. This initial approach will not only 
be helpful in understanding susceptibility to SARS-
CoV-2 infection, but could also inform how to control 
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the disease, as well as treatment progression and recov-
ery. By this way, we hope to make an impact on human 
health and healthcare systems in the areas of Vietnam 
affected by COVID-19 pandemic.
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and Thailand. Fig. S2. Percentage by Lineage by month in Vietnam and 
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