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Abstract 

Background: Efforts to protect residents in nursing homes involve non‑pharmaceutical interventions, testing, and 
vaccine. We sought to quantify the effect of testing and vaccine strategies on the attack rate, length of the epidemic, 
and hospitalization.

Methods: We developed an agent‑based model to simulate the dynamics of SARS‑CoV‑2 transmission among 
resident and staff agents in a nursing home. Interactions between 172 residents and 170 staff based on data from a 
nursing home in Los Angeles, CA. Scenarios were simulated assuming different levels of non‑pharmaceutical inter‑
ventions, testing frequencies, and vaccine efficacy to reduce transmission.

Results: Under the hypothetical scenario of widespread SARS‑CoV‑2 in the community, 3‑day testing frequency 
minimized the attack rate and the time to eradicate an outbreak. Prioritization of vaccine among staff or staff and 
residents minimized the cumulative number of infections and hospitalization, particularly in the scenario of high 
probability of an introduction. Reducing the probability of a viral introduction eased the demand on testing and vac‑
cination rate to decrease infections and hospitalizations.

Conclusions: Improving frequency of testing from 7‑days to 3‑days minimized the number of infections and hospi‑
talizations, despite widespread community transmission. Vaccine prioritization of staff provides the best protection 
strategy when the risk of viral introduction is high.
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Introduction
COVID-19 has highlighted many inadequacies in the 
American healthcare system. Elderly and frail residents 
of long-term care facilities (LTCFs) have experienced a 
disproportionate burden of infection and death. Approx-
imately 5% of all US cases have occurred in LTCFs, yet 
deaths related to COVID-19 in these facilities account for 
34% of all US deaths as of February 12, 2021, according 

to the New York Times [1]. Nationwide, there are about 
44,736 LTCFs in the United States, 15,116 of which are 
nursing homes. Together these facilities encompass more 
than 1.2 million staff and 2.1 million residents based on 
2015–2016 estimates [2].

Many oversight groups offered guidance on the preven-
tion and mitigation of COVID-19 in LTCFs, including the 
Centers for Disease Control and Prevention (CDC) and 
the Center for Medicare and Medicaid Services (CMS). 
Substantial numbers of transmission events from symp-
tom-free individuals made it clear that universal test-
ing, regardless of symptoms, was a critical component 
of a robust prevention program [3–5]. Testing frequency 
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was widely debated, as LTCFs had to balance the obvious 
need with the high cost and low availability of testing, 
especially early in the pandemic [5–7]. Vaccines are effec-
tive at preventing infection, serious illness and death. 
Despite the numerous challenges involved in the admin-
istration of vaccines, it is clear that their role has been 
instrumental in reducing the risk of outbreaks in LTCFs.

Nursing home residents are a priority group for vac-
cination, as are health care workers. The CDC launched 
the Pharmacy Partnerships for Long-Term Care Program 
in an effort to provide on-site vaccination to residents 
and staff members in LTCFs [8]. Though deployment of 
vaccines in LTCFs appears successful thus far, there is a 
growing concern that insufficient levels of vaccine cov-
erage will be reached. As of the end of January 2021, 
median first dose rates among LTCF residents is 77.8%, 
but only a median of 37.5% of staff have received at least 
their first dose [9]. It is unclear at this time whether the 
lower vaccination rates among staff is a result of prioriti-
zation of residents, lack of recording alternative sources 
of vaccination, or staff choice; however, a survey of nurs-
ing home staff conducted in the state of Indiana (Novem-
ber 2020) found that 45% of respondents were willing to 
receive a COVID-19 vaccine immediately once available, 
and an additional 24% would consider it in the future 
[10]. While visitors are disallowed and residents only 
interact directly with a small number of other people, 
staff are the primary vector for viral introduction [11, 12]; 
therefore, low rates of vaccine uptake among staff should 
be of great concern from the perspective of preventing an 
outbreak. Additionally, there is limited evidence about 
the ability of vaccines to reduce asymptomatic trans-
mission. Preliminary data from the UK suggests a 49.3% 
reduction in infections from an asymptomatic source 
[13]. Recent evidence of the circulation of more transmis-
sible SARS-CoV-2 variants also raises concerns about the 
course of this pandemic, particularly as less than 22% of 
the US population have received the full vaccine dosage 
[14].

Previous simulation studies have been developed to 
study transmission dynamics of COVID-19 in LTCFs 
and the effect of interventions such as: different test-
ing strategies [15–19], vaccine efficacy and distribution 
[20, 21], and use of PPE and other non-pharmaceutical 
interventions (NPIs) [21, 22]. There is a strong consensus 
that combined interventions with a strong focus on early 
detection is required to mitigate transmission.

Given the continued challenge of implementing 
robust protective measures in LTCFs, the bevy of 
unknowns around vaccine deployment, the uncer-
tainty involved with new circulating strains, and the 
impending lifting of co-recreation and visitor restric-
tions as states ease recommendations. We developed a 

agent-based model (ABM) with the objective to quan-
tify the effect of testing frequency and differing vacci-
nation strategies on morbidity and mortality in a long 
term care setting, using a nursing home in Los Angeles, 
CA as the foundation for our model. ABMs allow for 
incorporating population characteristics and imple-
menting interventions at the individual level. This is 
particularly useful to model COVID-19 spread, given 
that is well known the role of super spreaders and het-
erogeneity of the population in disease spread events 
[23], something that can be very challenging to cap-
ture using other population-based models. Our study 
assumes the continued presence of NPIs such as mask 
mandates for staff and universal testing and varies 
the risk of introduction by staff. The main outcome of 
this study is a model that can be adapted/modified to 
study the effects of these interventions in varied nurs-
ing home settings. Such modeling approaches can pro-
vide valuable insight into the design and deployment of 
combined vaccine and surveillance interventions before 
primary prospective research can be implemented [12].

To our knowledge, this is the first COVID-19 agent-
based model developed specifically to study LTCFs in 
California and the role of vaccination, testing, PPE use, 
and their interactions for disease control.

Methods
Model structure
We developed a stochastic agent-based model to simu-
late the spread of SARS-CoV-2 in an LTCF, based on the 
floor plan and occupancy of a nursing home in Los Ange-
les County, California with 172 residents and 170 staff 
(Fig.  1). Our model simulates the day-to-day dynamics 
in a facility with a hourly time step. The simplified floor 
map shows the location of bedrooms with a capacity of 3 
residents, 5 quarantine rooms reserved for residents with 
frequent outside traffic and/or capacity to quarantine 
detected residents, recreation areas which are currently 
off limits to resident and staff interactions, and rooms for 
staff. A detailed description of the model was described 
according to the ODD protocol [24] and presented in the 
additional section.

Agents in the model include residents and staff, with 
the natural history of COVID-19 captured through seven 
epidemiological classes (Additional file  1: Fig. S1). The 
model assumes that residents are not replaced with new 
susceptible agents, and staff with confirmed exposure to 
the virus are replaced by new staff confirmed negative for 
SARS-CoV-2 during the period of simulation. Recovered 
people gain immunity to reinfection lasting 120 days, and 
the latency period is sampled from a logarithmic normal 
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distribution [25]. Parameters and sources are described 
in Table 1.

Disease dynamics
When an infectious individual contacts a susceptible, the 
transmission of the virus follows a Bernoulli distribution 
P(yi = 1|xj = 1) = Bernoulli(pt) . yi = 1 represent the 
agent i getting infected, xj = 1 represent the agent j being 
infectious and the parameter pt represent the probability 
of a transmission event happening. The parameter pt is 
estimated per agent, per time step of the simulation based 
on agent attributes as shown in the Eq. 1. We assume that 
there is a reduction in the probability of transmission 
from asymptomatic individuals, which was explored via 
sensitivity analysis. Due to default preventive testing and 
isolation measures, only infectious (both symptomatic 
and asymptomatic) agents that have not been detected 
and isolated may contribute to new infections. A newly-
infected individual enters a latency period sampled from 
a lognormal distribution with a mean of 7 days [25]. After 
that time, the agent will become infectious, and 40% of 
people remain asymptomatic [26] until recovery. For 
those who develop symptoms, 23% [28, 29] require hos-
pitalization. The average number of days from the onset 
of symptoms to hospitalization is 4 days and a person 
stays in the hospital for an average of 6 days [30]. Mor-
tality rate was set at 11.8% [31] for hospitalized agents. 
The average recovery time for asymptomatic agents or 

those who never required hospitalization is 15 days [27], 
during which they remain infectious. Only residents are 
followed up after infection. Staff agents are assumed to 
leave during the infectious period and do not contrib-
ute further to disease spread. We assumed that recovery 
from a primary infection provided adequate immunity 
for the remainder of the simulation.

Staff and resident interactions
Agents in the model include residents and staff only, con-
sistent with the full visitor restrictions. Three residents 
are assigned to a single room. Five rooms are designated 
for quarantine/isolation of infected patients or for resi-
dents who require outside specialty care, such as dialysis. 
Residents only interact with two other residents in the 
same room and with staff, who can be one of three types: 
Certified Nursing Assistant (CNA), Registered Nurse 
(RN), and Licensed Practical Nurse (LPN). Isolated resi-
dents still interact with staff, but it is assumed that due 
to the behavioral changes, the transmission probability 
is reduced. Since meals are taken in rooms and use of 
communal space is restricted, residents do not currently 
interact with residents outside assigned rooms.

At the start of the simulation, the 170 staff mem-
bers are assigned a staff type based on the distribution 
described by Table  1. Each type of staff has different 
contact patterns with residents throughout the day. 
These contact rates are operationalized as contact 

Fig. 1 Case study of a nursing home in Los Angeles, CA
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probabilities defined from a multinomial distribution 
where each hour a CNA has a 0.7 chance to have 0 
contacts and 0.3 chance to have 1 contact with a resi-
dent, a LPN has a 0.15 chance of having 0 contacts, 0.2 
of two contacts, 0.25 chance of having 3 contacts, and 
so on (Table  1). Contact probability parameters were 
estimated from staff hour-per-resident-day (HRD) data 
from the CMS Nursing Home Compare data set. All 
residents have equal probability of interacting with any 
staff member, staff agents will prioritize the residents 
with less number of contacts. We assumed no differ-
ence in probability of viral introduction by staff type. 
Staff are assigned to one of three different work sched-
ules and will spend their time at the community other-
wise; 40% work in the morning (7 am–3 pm), 40% in the 
afternoon (3–11 pm), and 20% work overnight. They 
spend on average 8 hours inside the nursing home and 
the rest of the time in the community. Both scheduled 
time and type of staff are sampled from a multinomial 
distribution to reflect the distribution in our reference 
nursing home (Table 1).

COVID‑19 transmission in the community
Though there is large variability on the impact of 
COVID-19 in these facilities, tied to historic variability 
in testing capacity and PPE availability and adherence, 
the most immediate risk of a COVID-19 outbreak in a 
nursing home is the level of community transmission of 
SARS-CoV-2. Since we assumed that visitors are disal-
lowed completely, residents’ risk for primary exposure is 
contact through staff who acquired an infection from the 
wider community. A critical factor that our model aimed 
to study was to assess the impact of the probability of 
viral introduction from the community on the predicted 
size of internal outbreaks. Each scenario we investigated 
was simulated across three different probabilities of a 
staff member contacting with an infected individual at 
the community: low (1% per day), medium (5% per day), 
and high (10% per day). These are expressed as “introduc-
tion probability”, which is set to 0.05 for the baseline sce-
nario 1.

Table 1 Parameter descriptions, baseline values, and references

a Explored via sensitivity analysis
b Fitted to a distribution from data and truncated to a range of plausible values

Description Baseline value Refs.

Average time a person remains in the non‑infectious latency state ( α) lognormal(7, 3)b [25]

Proportion of asymtomatic people (f) 0.40 [26]

Average recovery time ( γ1) 15 days [27]

Proportion of hospitalized people ( σ1) 0.23 [28, 29]

Median number of days from symptom onset to hospitalization ( γ2) 4 (1, 9) days [30]

Median number of days of hospitalization ( γ3) 6 (3, 10) days [30]

Percent that die among those hospitalized ( σ2) 11.8% [31]

Shedding probability 0.38 [a]

Infection probability 0.38 [a]

Introduction probability 0.05 [a]

Assumptions for the scenarios

Percentage of staff using PPE 90% [a]

Percentage of residents using PPE 75% [a]

PPE effect ( ORpi) 0.1467 [a] [32]

 Detection probability 80% [a]

 Percentage of staff tested 90% [a]

 Percentage of resident tested 33.3% [a]

 Frequency of testing Weekly [a]

 Vaccine effect ( ORυ) 0.0493 [a] [33]

 Vaccine immunity duration 120 days [a]

Distribution of the staff agent characteristics

 CN contacts per hour Multinom ∼ (X0 = 0.7, X1 = 0.3)

 RN contacts per hour Multinom ∼ (X0 = 0.25, X1 = 0.75)

 LPN contacts per hour Multinom ∼ (X0 = 0.15, X2 = 0.2, X3 = 0.25, X4 = 0.2, X5 = 0.2)

 Work schedule Multinom ∼ (Xmorning = 0.4, Xafternoon = 0.4, Xnight = 0.2)

 Staff type Multinom ∼ (XCN = 0.6, XRN = 0.15, XLPN = 0.15)
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Interventions
We parameterized interventions with variable impacts on 
the transmission of SARS-CoV-2: PPE use and misuse, 
regular diagnostic testing, and vaccinations. We considered 
scenarios where staff were tested every 7 days (baseline), 5 
days, and 3 days (universal testing). Testing of residents in 
all scenarios assume that one resident per room is tested 
weekly, systematically cycling through the each resident 
every 3 weeks. Reduction in transmission probability 
from PPE use and vaccination were applied by modifying 
the shedding and infection probability parameters (Addi-
tional file 1: Table S1). Vaccine efficacy was translated into 
odds ratios of infection given exposure from the Pfizer 
and Moderna phase 3 clinical trial results. For brand- and 
age-agnostic scenarios, including the baseline scenario, 
the crude overall odds ratio was set to 0.0493. In scenar-
ios where vaccine brand and recipient age were taken into 
account, the efficacy of the Moderna vaccine after the sec-
ond dose was 95.6% (OR 0.0441) for individuals under 65 
years old and 86.4% (OR 0.1357) for 65 and older [33]. The 
efficacy of the Pfizer vaccine for individuals under 65 was 
roughly equivalent to Moderna (OR 0.434), but was 94.7% 
(OR 0.0619) for individuals 65 years and older [34]. For 
ease of implementation, residents were considered 65 and 
older, and staff were considered under 65. The vaccine odds 
ratio has a direct impact on transmission probabilities and 
reflects the upper bounds for vaccine efficacy according to 
Eq. 1. Let pt be the probability of a transmission event:

where the odds ratio ω ( ORω ) represents the global base-
line transmission probability of all agents, the odds ratio 
π ( ORπ ) represents the transmission reduction from the 
presence or absence of PPE, and the odds ratio ν ( ORν ) 
corresponds to the effect of vaccine status on transmis-
sion. Probability pt is computed for all agents at each 

(1)pt =
eln(ORωXω)+ln(ORπXπ )+ln(ORνXν )

1+ eln(ORωXω)+ln(ORπXπ )+ln(ORνXν )

time step in order to reflect different probabilities of 
transmission based on the interventions each individ-
ual received. For scenarios where a vaccine was imple-
mented, we specified the proportion of residents and 
staff that received a vaccine and a fixed time interval of 
21 days between the first and second dose, with a 60% 
efficacy after the first dose but before the second.

The baseline scenario assumed the CDC infection 
prevention and control recommendations for nursing 
homes, including visitor restrictions, daily symptom 
screening of residents and staff, use of face masks, and 
weekly testing of staff. We incorporated weekly cyclic 
testing of one of three residents per room, with alternat-
ing residents being tested each week. When a resident 
tested positive, they were isolated and the other residents 
from the same room were tested. Staff who tested posi-
tive were “isolated” (removed from the simulation, as if 
on paid leave) and replaced with new staff who tested 
negative. Parameters assumed for the baseline scenario 
are described on Table 1.

Model implementation
The model was implemented in GAMA 1.8.1 [35] and 
analysis were conducted in R [36]. Code for reproduc-
ing this study is available at https:// github. com/ jpabl 
o91/ NH_ COVID. We ran 4000 simulations for simu-
lated period of 150 days using a controlled random seed. 
To incorporate stochasticity, for each simulation run, we 
sampled a set of parameters from a list of possible values 
representing low, moderate, and high estimates (Table 2). 
The decision on the different parameter sample space 
was either changing (increasing or decreasing) in a 20% 
parameter estimate or based on the estimate and confi-
dence interval reported in the literature. The magnitude 
of the outbreak was measured from the results recorded 
in the model, including: Time to disease elimination from 

Table 2 Parameters explored for global sensitivity analysis

Equal vaccine efficacy assume that the efficacy was the same for resident and staff agents, A refers to a vaccine efficacy according to the reported by [33], and B a 
vaccine efficacy reported by [34]

Parameter name Definition Sample space

Infection_p Global transmission probability (0.304, 0.38, 0.456)

Introduction_p Probability of introduction from the community (0.01, 0.05, 0.1)

AsymptTransmission Asymptomatic transmission (0.34, 0.42, 0.99) [39]

SR_OR Reduction on transmission when comparing staff to residents (0.5, 0.7, 1.0)

TestingFreq Frequency of testing (days) (3, 5, 7)

detection_p Probability of correctly identifying a COVID‑19 positive case (0.64, 0.8, 0.96)

PPE_OR Influence of PPE in reduction of transmission expressed as odds ratios (0.0722, 0.1467, 0.3408) [32]

VaccineEff Vaccine efficacy (Equal, A, B)

vaccination_dist Distribution of the vaccine amongst residents and staff (0.0, 0.3, 0.5, 0.7)

https://github.com/jpablo91/NH_COVID
https://github.com/jpablo91/NH_COVID
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the facility, attack rate, cumulative number of infected, 
hospitalizations, and deaths.

The model was calibrated and validated with data on 
confirmed COVID-19 cases reported between May 24, 
2020, and February 14, 2021, in California nursing homes 
with similar resident census (between 150 and 200 occu-
pied beds) extracted from the Centers for Medicare & 
Medicaid Services (CMS) [37]. Given the lack of litera-
ture to parametrize the transmission probability in detail, 
we adjusted this parameter until the model results were 
similar to the cumulative number of infected, for both 
residents and staff, from the observed outbreaks. For 
model validation, we compared the observed cumula-
tive median of infected to the median estimated from the 
time steps in our simulation results of the baseline sce-
nario using correlation analysis and fitted a simple linear 
regression. We considered as a good fit to have high R2 
and Pearson’s R.

Analysis of outcomes and sensitivity analysis
We fitted simple linear regression models to estimate 
differences in the simulation outcomes to evaluate how 
sensitive our model is to the parameter changes. Random 
forest (RF), to rank the most influential parameters, and 
classification and regression trees (CART) to provide 
a graphical understanding of how parameters interact 
to affect the outcome, similar to the process described 
by [38] for global sensitivity analysis (GSA) of complex 
models.

Results
The model was well calibrated to the cumulative number 
of cases among residents and staff in California nursing 
homes. When comparing simulated with the observed 
total infections, we estimated a Pearsons R of 0.93 and 
a R2 of 0.87. Observed vs. expected median, 25th, and 
75th percentiles for the cumulative number of expected 
and simulated infected staff and residents are shown in 
(Fig. 2). We included the number of cumulative infected 
from an outbreak that happened in the same facility that 
was interviewed to develop the model.

Baseline scenario
In the baseline scenario, we assumed PPE mandates, 
weekly testing, and no vaccination. Baseline attack 
rate was 0.29 (95% CI 0.26, 0.31) and a median time to 
elimination from the facility of 106 days (95% CI 99.9, 
112.88). With the implementation of the vaccine, under 
the assumption of equal vaccine efficacy for residents and 
staff, the attack rate decreases in average 0.16 (0.14, 0.17) 
and the time to elimination decreases in average 38.89 
(35.4, 42.38) days in average (Table 3).

Sensitivity analysis
RF and CART results show that the model predictions 
are sensitive to complex combinations of the parameter 
estimates. The influence the parameters and the interac-
tions between them are presented in Fig. 3. For example, 
with the implementation of the vaccine and frequent test-
ing, the expected number of infected was 10 (estimated 
from 47% of the simulations). But, when the vaccination 
was not implemented at all, the PPE was poorly imple-
mented, testing was every 7 days, and the infection prob-
ability was high, the expected number of infected was 
248 (estimated from 3% of the simulations) (Fig. 3). The 
classification and regression trees explained 83.98% and 
61.6% of the cumulative infected and deaths variance, 
respectively. According to the RF results, the most influ-
ential parameters included vaccination (vaccine_dist), 
testing frequency (TestFreq), the effect of PPE (PPE_OR), 
and the infection probability (Infection_p). This was the 
same from both the cumulative number of infected and 
deaths, with the exception that for deaths, the infection 
probability was marginally more important than the PPE 
use.

Testing and vaccine interventions
Vaccine implementation reduced the time to disease 
eradication in average 38.98 days (35.4, 42.38 95% CI), 
the attack rate in 0.16 (0.14, 0.17), hospitalizations in 
13.76 (12.5, 15.01 95% CI) and deaths in 1.65 (1.47, 1.82).

The implementation of frequent testing, gradually 
reduced the expected cumulative incidence. Implementa-
tion of 5-day testing frequency reduced the average days 
to elimination in 26.98 (17.44, 36.51) and the attack rate 
in 0.12 (0.1, 0.14). When the testing frequency was done 
every 3 days, the days to eradication and attack rate were 
reduced in average 48.53 (38.76, 58.31) days and 0.17 
(0.14, 0.19) (Table 3).

Some other parameters we examine had no statistically 
significant effects in our model, such as different age spe-
cific transmission.

To explore more in detail the role of testing at vac-
cination at different introduction probabilities, we fit-
ted regression models adjusted for the different levels 
of community transmission. The difference in the sim-
ulation outcomes examined under these scenarios are 
presented in Table  4. The reduction in the outbreak 
magnitude with the interventions implemented was 
more evident when the probability of introduction was 
high, especially for the testing frequency (Fig.  4). For 
example, with a medium probability of introduction 
and 3-day testing, the attack rate was reduced in 0.17 
(0.14, 0.19 95% CI); but for a high introduction prob-
ability, the 3-day testing reduced the attack rate in 0.29 
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(0.21, 0.37 95% CI). Prioritizing the vaccination for the 
staff members also had a greater effect on reducing the 
outbreak size. For example, with a high probability of 
introduction, when prioritizing the vaccination for the 
staff, there was a reduction in the days to eradication of 
5.1 (0.4, 10.6 95% CI); however, when the vaccine was 
prioritized for the residents the hospitalizations were 
reduced in 3.27 (1.35, 5.18 95% CI).

Discussion
The importance of careful use of non-pharmaceutical 
interventions was a critical lesson from the COVID-
19 pandemic [40]. Mask policies, limited visitation, and 
especially frequent testing were critical to successful mit-
igation and prevention plans in the United States. Greater 
access to PPE and frequent testing surely played a part 
in reducing the case burden on LTCFs: case rates have 
dropped from a high of 33,625 nursing home cases/week 
to the current low of 1927 cases/week [37]. December 
18, 2020 marked the start of the Pharmacy Partnership 
for Long-Term Care Program in which the CDC part-
nered with multiple pharmacies to host on-site vaccina-
tion clinics for LTCF residents and staff [8]. Despite good 
vaccination progress, nursing home residents remain at 
high risk. As regulations ease, and with the possibility 
of requiring yearly vaccinations to prevent future out-
breaks, we must consider how surveillance, PPE usage, 

and vaccine timing and prioritization complement each 
other. Our study sought to describe the potential com-
bined effects of recommended NPIs and vaccine deploy-
ment strategies on the size and duration of a COVID-19 
outbreak in a model nursing home.

Prospectively, our model overestimated confirmed 
cases among staff, likely due the implementation of new 
interventions, like increased frequency of testing, put 
in place after SARS-CoV-2 was introduced in a nursing 
home. Our model underestimated cases among residents, 
which may be driven by the fact that some staff have 
more direct contacts with residents than others (Fig. 2).

Results from our model were most evident when we 
assumed a larger probability of viral introduction. In such 
cases, increased frequency of universal testing and isola-
tion of positive cases lead to larger reductions in attack 
rate than any other scenario. Prioritizing the vaccina-
tion of staff over residents lead to a moderate decrease 
in attack rate, especially when viral introduction prob-
ability was high. Community transmission rate is the 
strongest predictor of case rates in nursing homes thus 
far [41] and staff are the most important vectors through 
which introduction from the community occurs [11, 12, 
42]. Our results support using strategic prioritization of 
staff for universal testing, frequent testing of residents 
and vaccination as an important method for reducing the 

Fig. 2 Model‑predicted and observed number of cumulative incidence of confirmed cases for residents and staff. Dotted data represent the 
number of cases observed in the nursing home of study. Dark solid lines correspond to the median estimates for cases of staff and residents, and 
25th and 75th percentiles are depicted in the shaded regions
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likelihood of an outbreak, especially in  situations where 
community transmission is high.

There are several important challenges that these facili-
ties will continue to face. LTCF administrators reported 
that staffing remains one of the primary barriers to 
maintaining high infection control standards [43]. Addi-
tionally, facilities that had a high degree of connected-
ness via shared staff showed higher case rates in general 
[44]. Expanded paid leave programs may be a solution to 
reduce the need for staff to seek additional employment 
to make ends meet, generally lowering their personal risk 
and the risk of introduction events.

Evidence indicates that staff may be more hesitant to 
get the vaccine than residents [10], and certainly have 
lower first-dose rates even if unrelated to hesitancy 
[8]. Vaccine mandates are one way to approach ensur-
ing vaccine coverage goals are reached, but may cre-
ate additional problems maintaining proper staff levels 
for delivering quality care. Additionally, nursing staff, 
including CNAs and LPNs, have high turnover rates in 
LTCFs. As a result, vaccination rates may fluctuate over 
time even within the same facility. Maintaining vaccine 
coverage goals will likely require an active program that 
includes acquiring confirmation from staff who receive 
vaccines from a different source (i.e. a local pharmacy 
or a different job). We have even less data about the 
risks presented by reopening nursing homes to visitors, 

prompting questions about vaccine and testing require-
ments for visitors. An extension to this model that adds 
a visitor agent could help answer these questions before 
observational data becomes available.

Strengths and limitations
We calibrated our model using data from a real-world 
nursing home. The basal transmission model, in which no 
agents were vaccinated, generated plausible attack rates 
when compared to California nursing homes of a similar 
size. This, plus incorporating parameters from real-world 
data, provides external validity to the changes observed 
in our model. A particular strength of ABM is to show 
how complex outcomes can emerge from simple sets of 
rules; our model took advantage of this approach to show 
how interactions between staff and residents manifest the 
outbreak patterns observed in vivo. However, this model 
is primarily useful as an exploration of the impact of mul-
tiple interventions and introduction probabilities on an 
outbreak once introduction has occurred, and is there-
fore not meant to model the processes that lead to an 
introduction in the first place. Simulations were run for 
150 days or until the facility was disease-free for up to 7 
days; thus, it is also not able examine the impact of mul-
tiple introductions over longer periods of time or wan-
ing immunity from recovery or vaccination in its current 
form.

Fig. 3 Global sensitivity analysis. Top, pruned regression trees that shows the interactions and different pathways of the simulation results 
spectrum. Bottom, variable relative importance estimated
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The behaviors of the agents in our model were 
designed based on the information provided by the 
nursing home interviewed during January 2021. With a 
rapid changing real world event such as the COVID-19 
pandemic, some of these behaviors and the informa-
tion used to parametrize this model might vary among 
different facilities and time periods. For example, the 
turnover of patients at the facility interviewed during 
the development of the model was very low, accord-
ing to the nursing facility interviewed. This could 
have been different in other places. It is possible that 
the model presented here is not representing facilities 

where these recommendations were not followed. The 
model presented in this manuscript was specifically 
developed to explore the disease spread in the early 
stages of the vaccine distribution and implementation. 
Our ultimate goal was to develop a model that can be 
adapted to different settings, we hope we can keep 
updating and developing the model presented here to 
answer future research questions regarding the control 
and eradication of COVID-19 (and similar diseases) in 
LCTFs.

Not all data-derived parameters were made equally. The 
estimated effect of PPE use on transmission varied widely, 

Fig. 4 Attack rates for interventions under different assumptions of introduction probability (low, medium, high). Top presents scenarios for every 
3, 5, and 7 days of testing. Bottom presents scenarios for the vaccine distribution for an equal distribution amongst residents and staff, staff priority 
and resident priority
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thus making a reliable parameter difficult to define and the 
model sensitive to changes. Testing was also oversimplified 
in our model, as we assumed instantaneous results and all 
tests were equally sensitive. Additionally, we assumed that 
the effects of immunity, natural or from vaccination, was 
constant over the course of an outbreak and did not wane 
over time. We also assumed that staff agents had an equal 
chance of interacting with each resident agent, which is not 
reflective of intervention strategies that silo staff into daily 
routines focused on a specific subset of residents, such as 
dedicated staff for specific wards within the nursing home 
or for positive, isolated individuals.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12879‑ 022‑ 07385‑4.

Additional file 1:  Table S1. Agent attributes represented in the model. 
Figure S1. Epidemiological classes of the transmission model.
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