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Abstract 

Background:  In the Americas, endemic countries for Aedes-borne diseases such as dengue, chikungunya, and Zika 
face great challenges particularly since the recent outbreaks of CHIKV and ZIKV, all transmitted by the same insect 
vectors Aedes aegypti and Ae. albopictus. The Special Program for Research and Training in Tropical Diseases (TDR-
WHO) has developed together with partners an Early Warning and Response System (EWARS) for dengue outbreaks 
based on a variety of alarm signals with a high sensitivity and positive predictive value (PPV). The question is if this 
tool can also be used for the prediction of Zika and chikungunya outbreaks.

Methodology:  We conducted in nine districts of Mexico and one large city in Colombia a retrospective analysis of 
epidemiological data (for the outbreak definition) and of climate and entomological data (as potential alarm indica‑
tors) produced by the national surveillance systems for dengue, chikungunya and Zika outbreak prediction covering 
the following outbreak years: for dengue 2012–2016, for Zika 2015–2017, for chikungunya 2014–2016. This period was 
divided into a “run in period” (to establish the “historical” pattern of the disease) and an “analysis period” (to identify 
sensitivity and PPV of outbreak prediction).

Results:  In Mexico, the sensitivity of alarm signals for correctly predicting an outbreak was 100% for dengue, and 
97% for Zika (chikungunya data could not be obtained in Mexico); the PPV was 83% for dengue and 100% for Zika. 
The time period between alarm and start of the outbreak (i.e. the time available for early response activities) was for 
Zika 4–5 weeks. In Colombia the sensitivity of the outbreak prediction was 92% for dengue, 93% for chikungunya and 
100% for Zika; the PPV was 68% for dengue, 92% for chikungunya and 54% for Zika; the prediction distance was for 
dengue 3–5 weeks, for chikungunya 10–13 weeks and for Zika 6–10 weeks.

Conclusion:  EWARS demonstrated promising capability of timely disease outbreak prediction with an operational 
design likely to improve the coordination among stakeholders. However, the prediction validity varied substantially 
across different types of diseases and appeared less optimal in low endemic settings.
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Introduction
The arbovirus diseases dengue, Zika and chikungunya 
are transmitted by the same insect vector Aedes aegypti 
or Ae. albopictu. They present an increasing public 
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health concern in endemic countries. 3.9 billion peo-
ple living in 128 tropical or sub-tropical countries are 
at risk of being infected with these viruses [1–4]. Cur-
rently there is no specific pharmacological treatment 
nor an effective vaccine for public health use so that 
vector management is the only measure of prevention 
[5]. These diseases have a high social and economic 
impact, particularly when they appear as outbreaks 
[6]. An estimate of the economic costs of a chikungu-
nya outbreak in Colombia 2013 showed an approximate 
cost of 100 million dollars to the government (equiva-
lent to 0.04% of the national gross domestic product of 
2013) [7]. In the case of Mexico, a study by Undurraga 
et  al. estimated the annual cost of dengue in Mexico 
to be around US $ 170 (95% CL: 151–292) million [8]. 
The Zika outbreaks occurring between 2015 and 2017 
caused losses of 7 to 18 billion dollars in Latin Amer-
ica, including both the direct and indirect costs due to 
microcephaly and Guillain–Barré syndrome [9]. There-
fore, the need for early outbreak detection (when the 
outbreak has already started) or better outbreak predic-
tion (when the outbreak has not yet started) to initiate 
response activities and mitigate or even suppress an 
outbreak.

But early detection of outbreaks poses a challenge, 
since no universally accepted or proven sets of early 
warning indicators exist [10, 11]. A systematic review 
showed that countries are generally lacking outbreak pre-
diction tools that can be implemented by fairly unskilled 
users, and can automatically manage datasets [10, 12]. In 
reality, in most countries the early outbreak detection—
if any—is based on the increase of case numbers above 
a pre-established threshold (meaning that the outbreak 
has started already). Once an outbreak has started and 
the transmission rate gains speed, it will be increasingly 
difficult to contain the outbreak through vector control 
measures leading to social disruption and economic 
harms affected families and the society [6]. With this in 
mind, the Special Program for Research and Training for 
Tropical Diseases (TDR) at the World Health Organiza-
tion (WHO) initiated together with research institutions, 
national dengue control services and academia in ten 
endemic partner countries the development of a web-
based Early Warning and Response System (EWARS) for 
dengue, with potential uses for other arbovirus disease 
outbreaks [10, 13]. After initial retrospective analyses 
in five countries (Brazil, Mexico, Dominican Republic, 
Vietnam, Malaysia) [11, 14]—typically including calibra-
tion and prediction-algorithm building using historical 
records of diseases and alarm indicators—EWARS was 
tested prospectively in Brazil, Mexico and Malaysia to 
evaluate its qualitative and quantitative performance and 
user friendliness [14].

EWARS has never been tested for other emerging 
Aedes-borne diseases, such as chikungunya and Zika. 
This study therefore aims to test the performance of 
EWARS for predicting outbreaks of the three Aedes 
borne arbovirus diseases (dengue, chikungunya and Zika) 
using available data of the national surveillance systems 
in our two target countries. The response component of 
EWARS will not be covered in this paper.

Methods
Description of study sites
In both target countries the selection of study sites was 
dictated by the availability of information from the 
National Surveillance System and National Meteorologi-
cal Institutes [15, 16].

In Mexico we received the data set from nine dis-
tricts (labelled as “localities”) for Zika and chikungunya 
as well as weekly meteorological data. In Colombia, we 
received a complete data set including weekly mete-
orological information and epidemiological data with 
individual notification for Zika and chikungunya from 
a city. In Mexico, from the 137 endemic urban districts 
(as the three disease occur mainly in urban environ-
ments due to the opportunities of vector breeding), only 
nine were analyzed because they had complete informa-
tion records of disease and alarm indicators for the past 
5  years, essential for the EWARS process. The localities 
selected were Tuxtla Gutierrez, Acapulco, Ciudad Gua-
dalupe, Monterrey, Chetumal, Villahermosa, Coatzacoal-
cos, Veracruz and Mérida (Fig. 1). The total population of 
these nine districts is around 5 million inhabitants [17]. 
All of them possess suitable conditions for dengue vec-
tor breeding. The climate is tropical with average annual 
temperatures around 24  °C and rainfall above 1000 mm 
(except for Ciudad Guadalupe, Monterrey, and Mérida 
with around 700 mm).

In Colombia, Cúcuta, the capital of the State (“depar-
tamento”) of Norte de Santander was included which has 
around 750,000 inhabitants, 1176 km2 in area size and is 
located on the border area with Venezuela (Fig.  2). The 
climate is tropical (temperatures ranging between 21 
and 36  °C; average annual rainfall 655 mm; annual rela-
tive humidity between 70 and 75%) [18]. While dengue 
outbreaks have a long history in Cúcuta, outbreaks of 
CHIKV and ZIKV were reported only after 2014 and 
2015, respectively [18].

Public Health Surveillance system
In Mexico, the national surveillance system with its per-
manent notification of clinical cases of dengue, chikun-
gunya and Zika including neurological complications 
feeds into the online platform SINAVENational Epide-
miological Surveillance System (for “Sistema Nacional 
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de Vigilancia Epidemiológica”) where entomological data 
(ovitrap indexes) and response activities (entomologi-
cal platform) are registered. Both platforms receive on a 
weekly basis the information from all public and private 
health centers. Since 2018, Mexico has the fully inte-
grated EWARS tool for dengue outbreak prediction in its 
national surveillance program, providing a national cov-
erage of outbreak prediction and response activities.

In Colombia, the National Public Health Surveillance 
System (SIVIGILA for “Sistema Nacional de Vigilancia 
en Salud Pública”) provides systematic and timely infor-
mation on the number of dengue, Zika and chikungunya 
cases. The information gathered by the centers of health 
care of the public and private health system, is compiled 
and transmitted to the SIVIGILA, which updates the 
results weekly [19–21]. The data for the present study 
corresponded to cases reported in the urban area of the 
city of Cúcuta. Only cases with an individual report in 
SIVIGILA (form 217) and with complete information 

required by the EWARS system were included in the 
analysis [22]. Data were obtained from the local surveil-
lance system, with certified authorization. In Colom-
bia, the EWARS for dengue is not yet been established 
nationally but is being tested in the city of Cúcuta, which 
was the actual study setting.

Overview of the EWARS
The concept of the EWARS model is based on the 
Shewhart method [23] a method that adopts system-
atic control charts, using the historic mean and stand-
ard deviation of the outcome variable to define states 
of ‘in-control’ and ‘out-of-control’ throughout the 
model evaluation process. When applied to dengue, 
an Endemic Channel chart is produced which repre-
sents the number of cases within the expected normal 
range, or the ‘in-control’ state, while anything above 
this Endemic Channel (or, moving average) is consid-
ered representative of an unusual number of cases and, 

Fig. 1  Location of study sites in Mexico
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an ‘out-of-control’ state (i.e., an outbreak). The EWARS 
has advanced into an online tool (dashboard) which 
facilitates more structured training, applications and 
experience sharing among a broader range of users, also 
with the aid of a series of published computer-assisted 

user workbooks. URL: https://​alram​adona.​shiny​apps.​
io/​Demo_​Autom​ated_​Ewars/ [11, 24, 25].

These user guides illustrate methodological, tech-
nical and operational aspects crucial for the tool pro-
cessing. This includes details of how both digital and 

Fig. 2  Location of study sites in Columbia

https://alramadona.shinyapps.io/Demo_Automated_Ewars/
https://alramadona.shinyapps.io/Demo_Automated_Ewars/
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paper-based surveillance records of diseases and indi-
cators can be prepared for applying in the tool. Fig-
ure  3 illustrates the elements of inputs and outputs of 
the EWARS tool, which is divided into retrospective (a 

phase of sliding window time-series cross-validation 
and algorithm building) and prospective (phase of 
inputting weekly alarm information for generating the 
outbreak signals) components.

Fig. 3  a Snapshot of the retrospective dashboard, including graphical and numerical visualization of the calibration process and parameters. b A 
Snapshot of theprospective dashboard, including an interface for prospective (weekly) data input prediction (alarm signal against rate of outbreaks) 
and structured response plan using a generic staged-response format (adoptable based on the national vector response protocol)
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Data collection of outbreak and alarm indicators
In Mexico, the data collection started in January 2012 
and continued until December 2018. The dataset has 
been provided by SINAVE and by the entomological 
online platform from the Secretary of Health. In Colom-
bia, Cúcuta, the study covered the period from January 
2012 to December 2017. All reported cases of dengue, 
chikungunya and Zika were included using the case defi-
nition for each event, according to the Ministry of Health 
(MoH) and National Institute of Health (NIH), set out in 
the public health surveillance protocols [19–21].

For the application of EWARS, the temporal unit was 
defined as the epidemiological ‘week’ (from Sunday to 
Saturday) and the spatial unit was based on pre-existing 
administrative units (districts). At least 3 years of surveil-
lance data records were retained for the EWARS analysis 
including a variable indicating the ‘population size’ of the 
corresponding districts.

In the EWARS spread sheet we captured: district of 
residence, date of onset of symptoms, week of reporting 
and type of case (‘confirmed’ by laboratory or by clinical 
symptoms, ‘probable’ and ‘hospitalized’ cases). In addi-
tion, we also linked the potential alarm indicators such as 
meteorological and entomological indicators.

•	 Epidemiological (disease pattern): weekly number of 
cases (confirmed cases; probable cases for chikun-
gunya and Zika; hospitalized cases for dengue) and 
weekly averages of the age of the patients.

•	 Meteorological (potential alarm indicators): mean 
weekly outdoor air temperature (in Celsius), relative 
humidity (in %), and total weekly rainfall (in mm). 
Data were provided by the Institute of Hydrology, 
Meteorology and Environmental Studies—IDEAM 
of Colombia; in Mexico the data were obtained from 
weather stations in each district [14].

•	 Entomological (potential alarm indicators): percent-
age of positive ovitraps (i.e. proportion of positive 
ovitraps with Aedes eggs per week, average egg count 
per trap (Mexico only). (NB: Larval indices were use-
less as alarm indicators as they are usually not col-
lected in a systematic way as the ovitrap system in 
Mexico does [10].

Data analysis
Analysis by the EWARS tool
During the retrospective phase of EWARS, the weekly 
average number of cases for each of the three arbovirus 
diseases was calculated for 4 or 5 years, a year-cut off that 
accounted for more data variation and consequently gen-
erating higher sensitivity and PPV. These weekly averages 

of cases were compared with the expected “normal” or 
seasonal range of cases illustrated in the endemic channel 
[9, 10], which is the area between ± z* SD of the moving 
average—the z-value being the multiplier of the standard 
deviation of the moving average of weekly case numbers 
(Fig. 3). The Endemic Channel (moving average + (Z*SD)) 
was generated (“moving average” for each week of obser-
vation means that the average of number of cases in 
the 3  weeks before and after plus the week of observa-
tion were included) [11, 24, 25]. Weekly cases exceed-
ing this Endemic Channel for two or more consecutive 
weeks (“outbreak window”, see below) are indicating an 
outbreak.

During this retrospective phase, the algorithm and 
all parametric coefficients needed for calculating the 
alarm signal are computed; these coefficients depend 
primarily on the sensitivity (i.e. the proportion of cor-
rectly predicted outbreaks out of all outbreaks) and posi-
tive predictive value, PPV (i.e. the proportion of correct 
alarms out of all alarms) as direct measures for deciding 
on the best calibrated settings, i.e. those with highest 
sensitivity and PPV. (For more details on the calibration 
of EWARS see the user guide by WHO-TDR) [24, 25]. 
The ‘alarm signal’ is triggered when the outbreak prob-
ability—which is derived from the association between 
alarm indicators and disease outbreak—crosses the alarm 
threshold (the artificial threshold that can be systemati-
cally altered to reach optimal prediction). Although the 
study authors have actually conducted this analysis, the 
algorithm calibration is usually performed by an epide-
miologist at the central level (MoH). Less skilled district 
staff uses the prospective phase of EWARS, observing 
by means of the EWARS software the weekly number 
of cases against the upper line of the endemic chan-
nel and the pattern of alarm indicators against the pre-
defined alarm threshold (Fig.  3). An alarm is triggered 
when the alarm indicator (‘outbreak probability’) crosses 
the proposed ‘alarm threshold’ [10, 14] once prospective 
weekly information on the relevant alarm indicator(s) 
are fed into the system. Accordingly, instant numeri-
cal and graphical demonstration and interpretation of a 
possible outbreak and its corresponding response plan 
is illustrated to the user at a given prediction week (time 
between the prediction and an outbreak to occur).

Based on recommendation from previous reports [14], 
‘hospitalized’ cases proved to be the best outbreak indica-
tor for the prediction of a forthcoming dengue outbreak 
using EWARS. However, when the proportion of “mild” 
cases is high and patients are rarely hospitalized (such as 
in chikungunya and Zika), ‘probable’ or ‘confirmed’ cases 
were used as outbreak indicators. In this study, z-values 
(i.e. the multiplier of SD to get the upper limit of the 
endemic channel) and alarm thresholds were determined 
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for chikungunya and dengue via both manual and auto-
mated procedures (which can assess the calibration set-
tings via a 1000 iteration process per district i.e. testing 
up to 1000 different cut-off values, probability thresholds 
and window sizes of defining outcomes and alarms) [25].

Technically, both manual and automated processing 
follow the same analytical process: define “window sizes” 
of alarm and outbreak indicators (i.e. how many weeks 
with an alarm indicator being above the alarm threshold 
to declare it an “alarm signal” and for how many weeks of 
case numbers being above the upper limit of the endemic 
channel to declare it an “outbreak”), define above which 
level (alarm threshold) the alarm indicator turns into an 
alarm signal (i.e. gives an alarm) and define the predic-
tion distances (i.e. the time period between alarm and 
start of the outbreak in weeks). These variables are tested 
and only values that give the highest sensitivity and PPV 
are retained in the EWARS model. While a single alarm 
assessment is more straightforward, the model does take 
into account and adjusts for the different prediction dis-
tances associated with each alarm indicator when run-
ning multiple regressions. In this sense, the automated 
model is more efficient in running multiple trials and 
thresholds for producing the highest sensitivity and PPV 
for outbreak prediction.

Data analysis
Descriptive statistics, of both graphics and numeric 
formats were used in this paper. In the case of Mexico, 

while the prediction algorithm was run independently for 
each of the nine districts, output values obtained from 
the prediction process from each district were averaged. 
In Colombia, disease incidences were determined for 
Cúcuta (n cases / 100,000 population).

Ethical aspects
This study analyzed only secondary data obtained from 
Colombian and Mexican institutions with the authoriza-
tion of the Surveillance System (2017). Ethical endorse-
ment was obtained from the Ethics Committee of the 
University of Freiburg (N°-145/18) which was approved 
by local health authorities.

Results
Epidemiological features of outbreaks
In order to better understand the importance and chal-
lenges of outbreak prediction (as done by the EWARS) 
we will first present an overview of the dengue, chikun-
gunya and Zika outbreaks which occurred during the 
period of our analysis (Figs. 4 and 5).

Dengue
For Colombia, 15,811 cases of dengue were included in 
the analysis, 2013 was an epidemic year with 820 cases 
per 100,000 population in Cúcuta city, followed by 
the 2014 outbreak with 785 cases per 100,000 inhabit-
ants. Another increase in dengue was observed before 
the onset of the 2015 Zika outbreak, however it is likely 

Fig. 4  Time series of analytical cases of dengue, chikungunya and Zika in the urban area of Cúcuta, Columbia during the period 2012–
2016*. Dengue is in blue; chikungunya is in yellow and Zika is in red. The cases of Zika are quantified on the right. *Week of the first case of 
chikungunya; + Week of the fist case of Zika
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that in the weeks leading up to the confirmation of the 
first Zika case in the city, many suspected dengue cases 
would have actually been Zika. In Mexico, 2012 and 2013 
were epidemic years for dengue with 1060 cases/100,000 
inhabitants and 1300 cases/100,000 inhabitants con-
firmed cases respectively. After those epidemic years 
Mexico has seen a continuous reduction of dengue cases 
until 2018 with 12,706 confirmed cases.

Chikungunya
During the chikungunya outbreak in 2014–2015, cases 
were recorded from week 35 of 2014. An epidemio-
logical peak was observed for week 48 and a downward 
curve with stabilization of transmission from week 10 of 
2015. For the present study, 863 chikungunya cases with 
individual records required by EWARS were included. 
From the data considered for this study, the incidence 
rates of 115 cases/100,000 population in 2014 and 20 
cases/100,000 population in 2015 were estimated. 128 
cases were recorded in 2016. In Mexico, although the 
first cases appeared during 2014 (222 in the whole coun-
try) the chikungunya outbreak occurred during 2015 
with 12,588 confirmed cases. After 2015 there has been 
a steady reduction with 759 confirmed cases in 2016 to 
only 39 confirmed cases in 2018. The peak of the 2015 
chikungunya outbreak occurred around week 29. Unfor-
tunately, in Mexico the weekly numbers of chikungunya 
cases were not available so that the analysis with the 
EWARS tool could not be conducted (Figs. 4, 5).

Zika
The Zika outbreak in Cúcuta started in week 51 of 2015 
and lasted until week 10 in 2016 (12  weeks). The peak 
of cases occurred in week one of 2016 (753 cases), and a 
total of 4605 cases were reported during the years 2015 
and 2016. The highest incidence rate was 69,114 cases 
per 100,000 population. In Mexico the Zika outbreak, 
after some sporadic cases in 2015, occurred during 2016 
with 7560 confirmed cases in the whole country. 2017 
also presented a Zika outbreak which was considerably 
smaller (3260 confirmed cases). During 2018 the negative 
trend continued and there were only 860 confirmed cases 
[15] (Figs. 4, 5).

In the 2013 dengue outbreak, the highest incidence 
rates in Cúcuta were 81,994 cases per 100,000 population 
but when chikungunya entered, dengue rates decreased 
to 21,519 cases per 100,000 population. Similarly, chi-
kungunya rates were lowest, when the Zika outbreak 
occurred with 69,114 cases per 100,000 population. This 
phenomenon is worth to be investigated further.

Findings from the EWARS application
The datasets of all three arbovirus disease outbreaks 
were processed using the EWARS tool. The summary of 
the model calibrations, parameters including the sen-
sitivity, PPV and lag weeks (i.e. period from alarm to 
start of outbreak) for each disease per country are pre-
sented in Table  1. The number of ‘outbreaks’ and of 

Fig. 5  Time series of cases reported weekly in Mexico, of cases of dengue, chikungunya and Zika during the period 2009–2019. Dengue is in blue; 
chikungunya is in yellow and Zika is in red. The cases of Zika are quantified on the right. *Week of the first case of chikungunya; + Week of the fist 
case of Zika
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‘alarms’—which are the basis for calculating the sensitiv-
ity and PPV values—are displayed in the tables as well as 
the alarm thresholds to show their variation for the three 
diseases.

Dengue
A value of z = 1.0 was found in the Colombian and Mexi-
can data sets to be the most suitable (i.e. producing the 
highest sensitivities and PPV values) multiplier of the SD 
to define the upper limit of the endemic channel with 
“hospitalized dengue cases” as outbreak indicator. The 
sensitivity to correctly predict a dengue outbreak var-
ied between 74 and 92% in Colombia and 81–100% in 
Mexico, for different alarm indicators; whereas the PPV 
ranged between 50 and 68% in Colombia and 50–83% in 
Mexico, including both single and multiple alarm pre-
diction analysis. The Table  1 shows that multiple alarm 

predictors enhanced the prediction model. The lag time 
in Colombia ranged from 3 to 5 weeks ahead of an out-
break. Table 1 provides detailed results. The calculations 
for dengue in Mexico (taken from a previous analysis) 
were done in exactly the same way as the calculations in 
Colombia. Unfortunately, we did not get a new data set 
from Mexico to be able to repeat the dengue analysis.

Chikungunya
Due to insufficient numbers of hospitalized cases found 
in the Colombian surveillance dataset (as most cases were 
mild), ‘probable cases’ were used as the outbreak indica-
tor instead, which revealed a sensitivity range of 77–93% 
and a PPV range of 48–92%. The lag time between posi-
tive alarm and start of the outbreak was 10 to 13 weeks, 
much longer than observed with dengue (Table 1).

Table 1  Sensitivity and PPV for dengue outbreak prediction using hospitalized cases as outbreak indicator; for chikungunya outbreak 
prediction using probable cases as outbreak indicator; for Zika outbreak prediction, using defined and probable cases as outbreak 
indicators

*Multiple indicators; temperature, precipitation and humidity, PPV positive predictive value

**Values from Mexico taken from a previous period [14]

Dengue outbreak

Country Alarm indicators Sensitivity (%) PPV (%) No. of 
outbreaks

No. of Alarms Alarm 
threshold

Lag week

Colombia Mean temp 86 61 76 106 0.69 3

Rainfall 74 51 76 110 0.70 3

Humidity 80 60 76 102 0.65 3

Probable cases 91 50 77 141 0.75 5

Multiple indicators* 92 68 50 68 0.70 3

Mexico** Mean temp 81 72 – – – –

Rainfall 87 65 – – – –

Humidity 94 50 – – – –

Probable cases 100 83 – – – –

Multiple indicators* 84 77 – – – –

Chikungunya outbreak

Colombia Mean temp 77 71 13 14 0.80 10

Rainfall 93 48 14 27 0.45 12

Humidity 92 85 15 13 0.75 12

Multiple indicators* 92 92 12 12 0.74 13

Zika outbreak

Colombia Mean temp 100 11 2 19 0.05 10

Rainfall 50 54 2 7 0.05 6

Humidity 50 11 2 9 0.06 10

Multiple indicators* 100 14 2 14 0.05 10

Mexico Mean temp 92 100 36 33 0.50 4

Rainfall 97 94 28 28 0.40 4

Humidity (daylight) 88 86 53 52 0.50 5

Humidity (night) 97 98 29 29 0.50 5

Positive ovitrap 92 97 25 25 0.40 5

Average Egg counts 78 77 22 22 0.40 4
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Zika
Estimates of both sensitivity and PPV for different 
alarm indicators ranged in Colombia from 50 to 100% 
(mean temperature and multiple indicators with the 
highest sensitivities) and from 11 to 54% respectively 
(rainfall with the highest PPV). In Mexico, the range 
was from 78 to 97% (rainfall with the highest sensitiv-
ity) and 77–100% (mean temperature with the highest 
PPV) respectively (Table 1). In general, the alarm coef-
ficients were stronger in Mexico compared to those in 
Colombia. The historically higher number of outbreaks 
and alarm thresholds in Mexico compared to Colom-
bia were reflected in improved sensitivity and PPV val-
ues for predicting Zika outbreaks. The difference may 
also be caused by differences in data quality which was 
higher in Mexico. The lag times were longer in Colom-
bia—ranging from 6 to 10  weeks—compared to Mex-
ico—ranging from 4 to 5 weeks.

Discussion
Outbreak pattern
The observation of the outbreaks of dengue, chikun-
gunya and Zika in Colombia and Mexico suggests that 
arboviruses present a similar pattern at the start of the 
outbreak. The increase of the chikungunya and Zika 
curves was preceded by a dengue peak, possibly due to 
diagnostic confusion (see Figs. 4, 5). It can be assumed 
that during the first weeks of the chikungunya outbreak 
in Colombia, the unusual increase of dengue cases (172 
cases in week 44 of 2014) was possibly due to chikun-
gunya infections that remained unconfirmed by the 
laboratory. The later chikungunya cases were correctly 
diagnosed and the epidemic curve rapidly increased.

The same happened when the Zika outbreak occurred. 
Two weeks before the peak of Zika cases, there was an 
increase in “dengue cases”. Many of these were probably 
Zika infections. Only after the laboratory confirmation 
of the Zika virus in the national laboratory, the correct 
diagnoses were notified and the number of reported 
Zika cases increased. A similar but less pronounced 
phenomenon was observed in Mexico in 2014/15: at the 
beginning of the chikungunya outbreak, there was an 
increased dengue activity probably because the medical 
doctors did not consider chikungunya to be a diagnos-
tic option. The same happened with the Zika outbreak 
in 2016 when first dengue case numbers increased and 
subsequently Zika was detected. The delay in the con-
firmation of cases can lead to the silent spread of the 
new disease, which makes control difficult. This situa-
tion highlights the need for an improved surveillance 
system with a focus on early outbreak warning.

The observation that Aedes borne arbovirus outbreaks 
seem to mutually suppress each other warrants further 
confirmation.

Dengue, chikungunya and Zika have a seasonal trans-
mission pattern which is accounted for in the present 
EWARS model. However, there are also important vari-
ations over the years depending on response activities by 
the vector control services and climatic change. These 
variables are now taken care of in a further developed 
EWARS model, which is being tested at the moment and 
will be published later.

The propose of Early Warning and Response System 
(EWARS)
The EWARS tool is primarily aimed at supporting district 
health managers and national health planners to mitigate 
or prevent disease outbreaks, ideally using tools that are 
integrated in the national surveillance programs [26]. To 
further ensure effective functions, the EWARS should be 
perceived as an information system designed to support 
the decision-making of national- and local-level institu-
tions but also enable vulnerable groups in the society to 
take actions to mitigate the impacts of an impending risk 
[26].

Recent analysis of the evidence indicates that early 
warning and response system that are capable of dem-
onstrating evidence of prospective predictive ability and 
allows technical and practical adaptations of local pub-
lic health responses while augmenting communications 
channels between users at central and district levels are 
tools that are more likely to be implemented into national 
surveillance programs [27]. In this sense, EWARS has 
moved towards frameworks that facilitate low-cost IT 
maintenance and adapt to unskilled users. The aim is to 
form a tool that can be plausibly integrated into existing 
national systems [25, 27].

Predictive abilities of the Early Warning and Response 
System
In an effort to more effectively prepare for and prevent 
arbovirus disease outbreaks, the EWARS appeared to 
adequately predict outbreaks of dengue (3 to 5  weeks), 
chikungunya (10 to 13 weeks) and Zika (6 to 10 weeks) 
ahead of time in Colombia. In Mexico, the lag time was 
relatively shorter for Zika with 4 to 5 weeks ahead of the 
outbreak (not tested for dengue and chikungunya). The 
variation of lag times for the three diseases may be due 
to different extrinsic incubation periods (i.e. the time the 
virus replication and passage from the mosquito gut to 
the salivary gland requires) but could also be due to the 
different delays caused by health services diagnose of the 
diseases [10]. A lag time of 6 to 10 weeks ahead of dis-
ease outbreaks would allow timely public health services 
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response with enhanced vector control measures. Nev-
ertheless, shorter time periods for preparing response 
activities will require the definition of high transmission 
“hot spots” where interventions can be targeted. The 
better the control programmes are prepared to identify 
such high transmission areas and step up the response 
quickly, the better the chance to mitigate or even avert an 
outbreak. This has been shown for Mexico [28] and has 
triggered the incorporation of risk maps into the EWARS 
tool.

For dengue outbreaks, the sensitivity of alarm indica-
tors to correctly predict an outbreak varied in both coun-
tries, with a validity ranging between 74 and 92% using 
multiple meteorological indicators. The importance of 
meteorological alarm indicators underlines the charac-
teristic climate sensitivity of vector borne diseases. This 
pattern is similar to that observed in other studies, which 
used EWARS for dengue outbreak prediction (83–99% 
sensitivity in Brazil, 50–99% in Malaysia and 79–100% 
in Mexico) [14]. Likewise, the PPV of up to 68% in 
Colombia and up to 83% in Mexico was similar to those 
reported in previous reports (40–88% in Brazil, 71–80% 
in Malaysia and 50–83% in Mexico) [14]. The sensitivity 
and PPV as statistical measures of EWARS performance 
have meaningful operational implications with the sensi-
tivity indicating the validity of the tool in detecting and 
predicting outbreaks in time. The PPV, however, can 
inform local health district managers of potential eco-
nomic consequences of failing positive alarms—e.g. for 
70% PPV, one can be certain that about 30% of resources 
deployed would not be efficiently used. This is a crucial 
measure which has further directed the EWARS design 
to employ a step-wise approach of vector control and 
response to ensure more efficient application of the tool 
mainly in resource-limited settings (‘initial’ response: 
is declared when two consecutive alarm signals occur; 
‘early’ response: is declared when three consecutive 
alarm signals occur; and ‘late’ response: is declared when 
more than three consecutive outbreak weeks take place). 
Nevertheless, even in the case of false alarms, resources 
on vector control are not spent in vain as they contribute 
in any case to keeping vector densities down.

In the case of chikungunya, the sensitivity to correctly 
predict an outbreak varied among alarm indicators from 
77 to 93%, being rainfall and the combination of mete-
orological indicators the alarm signals with the highest 
sensitivity. Likewise, the PPV of up to 85% was similar 
to those reported with dengue in other countries [14]. 
Therefore, the EWARS would predict outbreaks 10 to 
13  weeks in advance, providing adequate time to acti-
vate response actions. In the case of Zika, the sensitivity 
(50–100%) and PPV (11–100%) were similar to the pre-
diction of dengue and chikungunya when using alarm 

indicators with the highest values for sensitivity and 
PPV. While several studies are existing in the literature 
to demonstrate the applications of prediction models 
for dengue outbreaks, the EWARS is also useful for Zika 
and chikungunya outbreak prediction. Based on a recent 
scoping review study [27], five models showed outstand-
ing performance in dengue outbreak prediction; (i) the 
dynamic risk maps absolute shrinkage and selection 
operator (LASSO) processing multiple meteorological 
information; (ii) the auto-regression integrated moving 
average (ARIMA) using meteorological information and 
Google Trends data; (iii) the Shewhart moving average 
regression model (SMAR) maintaining a combination 
of meteorological, epidemiological, and entomological 
alarm indicators, which is the model employed in our 
study; (iv) the seasonal autoregressive integrated moving 
average (SARIMA); and (v) the stochastic Bayesian maxi-
mum entropy (BME) model using a mix of meteorologi-
cal and entomological alarm indicator. Despite the fact 
that LASSO models seem to be toping the tools perfor-
mance, these models were declared unamenable to easy 
and direct interpretation and usually demand advance-
level of historical data, which limits their applications. 
No studies were retrieved from the literature to support 
the statistical prediction performance of Zika and chi-
kungunya outbreaks.

This is the first study to evaluate TDR-EWARS using 
chikungunya and Zika surveillance data against mete-
orological and entomological alarm information, and the 
overall study findings were promising towards imple-
menting the tool at national level. However, outbreak 
prediction in low endemic areas is less optimal and 
should be carefully interpreted in relation to routine vec-
tor control and response. Despite the fact that 3-year data 
records were sufficient to demonstrate the applicability of 
EWARS to broader Aedes borne arbovirus diseases, using 
longer historical surveillance records has the potential 
to affect the definition of outbreaks and consequently 
impact on the sensitivity and PPV. As the user-friendli-
ness of the application has already been established [14], 
the next step is to bring it to practical use in endemic 
countries and monitor its ability to predict outbreaks and 
trigger effective response.

Limitations of the study
This study was based on the cases registered by the pub-
lic health surveillance system in Colombia, which clas-
sifies the cases as probable, confirmed and hospitalized 
[1, 19–21]. All confirmed cases should present a positive 
laboratory test, but in the current Colombian database 
the confirmed cases were sometimes based on clinical 
criteria. For chikungunya in Colombia, 106,592 cases 
were reported by SIVIGILA in 2014, 98% of which were 
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confirmed cases according to clinical criteria [19–21]. 
This reduces the reliability of the case definition. For den-
gue, the use of hospitalized cases as outbreak indicator 
was feasible, but in chikungunya and Zika this was hardly 
the case due to the low proportion of “hospitalized cases”. 
This limitation was overcome by taking into account 
probable and confirmed cases as outbreak indicators a 
suggested by other authors [14, 19–21, 23, 24]. Further-
more, there is a possibility of overestimation caused by 
the out-of-sample prediction, which may explains the 
case of 100% sensitivity observed. This can be reduced 
by employing a longer-data history of disease and alarm 
information.

In Cúcuta, more than 23,000 cases of chikungunya 
occurred, but the majority were diagnosed collectively 
(“collective reporting” i.e. all patients with fever and 
other symptoms in the waiting area of a health service 
are diagnosed as having chikungunya), and only a small 
proportion of cases had complete information from 
individualized examination [19, 22] which is the routine 
approach in Mexico. Collective reporting demonstrates 
the impact of the chikungunya outbreak on the over-
stretched health system in Colombia. However, the data 
analyzed in this study was collected throughout the epi-
demic underlining the ability of the surveillance system 
to function under difficult circumstances [19, 29].

The time period for retrospectively testing the valid-
ity of the EWARS tool was relatively short (3 years in the 
case of Zika); longer retrospective observation periods 
would have reflected better the usual pattern of the dis-
ease which is not possible in case of a newly emerging 
disease.

Conclusion
EWARS demonstrated promising capability of timely 
disease outbreak prediction with an operational design 
likely to improve the coordination among stakehold-
ers. However, the prediction validity varied substantially 
across different types of diseases and appeared less opti-
mal in low endemic settings.
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