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Abstract 

Background:  Leishmaniasis, a disease caused by a protozoan, causes numerous deaths in humans each year. After 
malaria, leishmaniasis is known to be the deadliest parasitic disease globally. Direct visual detection of leishmania 
parasite through microscopy is the frequent method for diagnosis of this disease. However, this method is time-con‑
suming and subject to errors. This study was aimed to develop an artificial intelligence-based algorithm for automatic 
diagnosis of leishmaniasis.

Methods:  We used the Viola-Jones algorithm to develop a leishmania parasite detection system. The algorithm 
includes three procedures: feature extraction, integral image creation, and classification. Haar-like features are used as 
features. An integral image was used to represent an abstract of the image that significantly speeds up the algorithm. 
The adaBoost technique was used to select the discriminate features and to train the classifier.

Results:  A 65% recall and 50% precision was concluded in the detection of macrophages infected with the leishma‑
nia parasite. Also, these numbers were 52% and 71%, respectively, related to amastigotes outside of macrophages.

Conclusion:  The developed system is accurate, fast, easy to use, and cost-effective. Therefore, artificial intelligence 
might be used as an alternative for the current leishmanial diagnosis methods.
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Background
Leishmaniasis, a disease caused by more than 20 spe-
cies of leishmania parasites, is recognized in the tropical 
and subtropical regions as an acute disease with a high 
mortality rate. The disease manifests itself in both cuta-
neous and visceral forms and is transmitted via parasite-
infected mosquitoes [1, 2]. Cutaneous Leishmaniasis 

(CL) is endemic in more than 88 countries and around 
two-third of the cases occur in Afghanistan, Algeria, Bra-
zil, Pakistan, Peru, Saudi Arabia, Iran, and Syria [3, 4]. 
Annually, CL is estimated to cause 1 million new cases 
[5], with limited responsed in treatment and manage-
ment [6–10].

The clinical symptoms of CL vary depending on the 
species of the parasite, but the disease, in general, begins 
with a papule or nodule, reaching its final size in about a 
week. Its center contains a shell that may break apart and 
show a wound that will heal slowly over months or years 
[11]. However, an estimated 10% of CL cases become 
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chronic and progress into severe symptoms [12]. Consid-
ering the wide clinical spectrum of CL, certain diseases 
are likely to have similar clinical manifestations (e.g. 
dermatitis, squamous cell carcinoma, tuberculosis, skin 
mycosis). Therefore, to differentiate CL from its clinical 
and histologic look-alikes, additional diagnostic meas-
ures need to be taken [12].

Even today, parasitological diagnosis of CL remains 
the gold standard due to its high specificity [13]. The 
process includes a microscopic examination of biopsies 
with Giemsa stained or aspirates, histological examina-
tion of fixed lesion biopsies, culture, triturates, or aspi-
rates biopsy [14]. Currently, microscopic examination is 
probably the most common diagnostic method because 
it is less expensive and available at the level of primary, 
secondary, and tertiary healthcare. Among these meth-
ods are protein A (ProtA), immunoglobulin (Ig)G2, lym-
phocyte proliferation assay, indirect fluorescent antibody 
test (IFAT), the quantitative real-time polymerase chain 
reaction of bone marrow (qPCR-BM), qPCR-Blood, and 
IgG [15]. Cultivation is another diagnostic method that 
provides useful information for the identification and 
description of species, but it is time-consuming and 
requires expenditures and technical expertise. Moreover, 
the sensitivity of this method is quite low [16].

Molecular parasitic diagnosis of CL has been exten-
sively developed and reviewed over the past decade [17]. 
Diagnosis is mainly performed by PCR-based methods 
and is particularly useful in cases of low parasitic multi-
plicity (e.g., mucosal Leishmaniasis). Moreover, the treat-
ment of CL patients can be controlled and followed up 
by this method. The specificity of this technique is 100, 
but its sensitivity is around 20% to 30% in CL and 55% 
to 70% in mucosal leishmaniasis which is low compared 
to conventional parasite detection methods. Several 
efforts have been made to improve the performance of 
molecular parasitic diagnosis of CL such as the success-
ful discovery of parasitic DNA in blood or tissue stains; 
development of rapid PCR oligo-chromatography; how-
ever, its applications are still limited because this method 
is expensive and it also needs considerable laboratories’ 
infrastructure and technical expertise [17].

In this paper, we developed an artificial intelligence 
(AI)-based system to assist with detecting and diagnosing 
leishmania parasites. Details of the method and its evalu-
ation results using several real images are presented.

Methods
We used 300 images taken from 50 laboratory slides 
acquired from lesions suspected of leishmaniasis and 
from patients referred to Valfajr Clinic in Shiraz, Fars, 
Iran. These images include 150 photos from 25 posi-
tive leishmania slides and 150 photos from 25 negative 

Leishmania slides (control). The slides were prepared 
and labeled by taking samples from inflamed edges of the 
wounds using a sterile scalpel and smeared on slides, fol-
lowed by 100% ethanol fixation and Giemsa staining.

According to the morphological data acquired by 
assessing the slides, the Viola-Jones algorithm was used 
to design an intelligent system capable of detecting infec-
tion in the collected smears. Briefly, the detector should 
be provided with images of both parasitic and non-par-
asitic samples so that it can gradually learn their distinc-
tive features and become able to spot infected regions in 
an unseen image. Viola-Jones algorithm acts in the fol-
lowing steps: feature extraction, integral image creation, 
and classification [18].

For feature extraction, the sum of the pixels within the 
white rectangles is subtracted from the sum of pixels in 
the grey rectangles (Fig. 1). The result is used as features 
to represent subsections of an image. Intuitively, these 
rectangle features are inspired by Haar wavelets which 
are simply square functions with various scales and 
translations.

Integral image creation was used to increase the pro-
cessing speed and the number of features., The images 
used contain irrelevant parts. Moreover, an abundant 
number of Haar-like features should be computed. Par-
ticularly, 162,336 features were computed for a 24 × 24 
pixel image window. To resolve this issue, we used the 
image integration technique by which the intensity of 
each pixel at 

(

x, y
)

 is the sum of all the pixels that reside 
above and to the left side.

By categorizing the subsections using Haar-like fea-
tures, we can create integral images. The reason behind 
the categorization is to eliminate unwanted sections 
of our image and shorten processing time. To com-
pute the sum of the pixel values in the subsections, 
array references are used. A single-rectangle sub-win-
dow needs four array references, while two, three, and 
four adjacent rectangle sub-windows need six, eight, 
and nine references, respectively. In an integral image 
of size R× C , the main integral image ii(R,C) is pro-
duced during single processing of the sum of the pixel 

Fig. 1  Rectangular window detection of Haar-like feature [19]
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values above and to the left of (R,C) . Once the integral 
image representation ii of the original image I is com-
puted, the sum of original pixel values within any rec-
tangle can be computed by a lookup table. Therefore, 
as shown in Fig. 2, to compute the sum of pixel values 
in subsection S1, (r1, c1) is needed and is computed as 
mentioned below:

whereas to compute the values of subsection S4 reference 
arrays (r1, c1), (r2, c2), (r3, c3) and (r4, c4) are needed.

σ (S1) = ii (r1, c1)

σ (S4) = ii (r4, c4)− ii (r3, c3)− ii (r2, c2)+ ii (r1, c1)

Therefore, aside from creating integral images, cer-
tain learning algorithms are employed to select the best 
features and to train classifiers. Adaboost, currently the 
most popular boosting method, acts by adding weak 
learners to a boosted classifier one by one. This way, each 
new classifier is trained using a new set of information. 
The resulting classifiers are integrated with a cascade 
scheme (Fig. 3).

Cascading is a stage-by-stage process, each stage con-
sisting of a particular classifier with certain features. 
While all the features are grouped in these stages, the 
purpose of each stage is to determine whether a particu-
lar sub-window is not a match with the desired result or 
it may be a match; the desired result being the recogni-
tion of the previously defined morphological data. If a 
sub-window fails to find a match in any of the stages, it 
is discarded immediately. Therefore, usually, a classifier 
consisting of only a few simple and general features is 
used in the first stage/stages to rapidly remove unwanted 
subjects, granting more computational time to further 
stages requiring deeper analysis. Alternatively, a cascade 
of gradually more complex classifiers can achieve bet-
ter detection rates, at the high cost of run-time speed, 
making it inefficient to do so. The sensitivity threshold 
can be adjusted in a cascade, preventing each stage from 
having a lower detection rate than the specified thresh-
old. The total sensitivity will be the product of stage 
sensitivities. Ultimately, cascading classifiers enable the 
detection of the desired object in an image to be gradu-
ally approximated and a robust classifier is developed. 
Viola-Jones algorithm results in a drastic improve-
ment of accuracy and execution time. In a given dataset 
(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xn, yn
)

, yi is selected as 0 for nega-
tive cases and yi = 1 for positives.

	 I.	 For, yi = 0 1 weights are considered to be 
w1,j =

1
2m , 1

2l , respectively; where m is the number 
of negative cases and l the number of positives.

	II.	 For t = 1, …, T: 

Fig. 2  The complete expression of the integral image; the 
sum of the pixels inside sub-window S1 using the relation 
σ (S1) = ii (p1) = ii (r1, c1)  is obtained and also the sub-windows 
S2 and S3 with the relations σ(S2) = ii (r2, c2)− (r1, c1) and 
σ (S3) = ii (r3, c3)− ii (r1, c1) are expressed. The pixels below S4 are 
also calculated as σ (S4) = ii (r4, c4)− ii (r3, c3)− ii (r2, c2)+ ii (r1, c1) . 
(Image by Uc-Cetina et al. [20])

Fig. 3  Adaptive boosting. The step-by-step process of tweaking classifiers
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a)	 Weights are normalized as shown,

b)	 Train the classifier hj for each jth feature, being 
restricted to using a single feature. The error is 
computed using the equation 
wt ,∈j=

∑

i

wi

∣

∣hj(xi)− yi
∣

∣.

c)	 The classifier with the lowest ∈t error, ht, is cho-
sen.

d)	 The weights are updated as:
	 wt+1,i = wt,iβ

1−ei
t ,

	 βt = ∈t/(1−ϵt), and ei = 0,1 for correct and incor-
rect classification of xi, respectively.

	III.	 The strong classifier ensembled from single weak 
classifiers is as follows:

Results
The performance of the developed system was quanti-
tatively assessed using the two evaluation metrics sen-
sitivity and specificity. Sensitivity, the probability of a 
positive test outcome in an infected patient, is calculated 
as shown below:

wt,i
∑n

j=1 wt,j
→ wt,i

h(x) =







1
T
�

t=1

αtht(x) ≥
1
2

T
�

t=1

αt

0 otherwise

,

where αt = log

(

1

βt

)

Therefore, the fewer the number of false negatives, the 
higher the sensitivity will be. In this study, this rate was 
computed to be 50% and 71% for infected macrophages 
and amastigotes outside of macrophages, respectively 
(Fig. 4).

Additionally, the chance of a negative test in a healthy 
patient, known as specificity, can be calculated similarly;

Meaning that a low count of false positives increases 
the likelihood of the method is precise. Specificity in 
the detection of Leishmanial infected macrophages was 
shown to be 65%, while it was 52% for individual para-
sites (Fig. 4).

Overall, when the output of the infected macrophages-
based system and individual parasites-based system were 
combined using OR combiner, the system provided a 
sensitivity and specificity of 83% and 35% in parasite 
detection, respectively.

Discussion
In recent years, many methods have been suggested to 
diagnose the leishmanial parasite [21]. Each method was 
successful in several aspects, but there are several dis-
advantages associated with each method. Direct visual 
recognition using a microscope is a simple and cost-effi-
cient method for parasite detection; however, it depends 
on the skillfulness of the expert and its sensitivity rate 

Sensitivity =
True positive

True positive + False negative

Specificity =
True negative

True negative + False positive

0%

10%

20%

30%

40%

50%

60%

70%

80%

Detection of infected macrophages Detection of individual parasites

Accuracy Specificity Sensitivity

Fig. 4  The accuracy, sensitivity, and specificity and of leishmania detection system, both in and outside of macrophages
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is relatively low [22]. Culture use, as another method 
for parasite detection, requires its own set of tools and 
expenses, and the probability of infection with other 
microbial organisms during the process might negatively 
affect the results [23]. Serological tests such as IFA and 
ELISA face the same issue as they cannot differenti-
ate past and present infections. Additionally, serological 
tests, due to low antibody titers of the leishmanial para-
site, do not offer much diagnostic value [24]. Early diag-
nosis of deadly diseases, such as leishmaniasis, results in 
an earlier treatment/control which can influence mor-
tality rates significantly. Presently, PCR is known as the 
method presenting the highest sensitivity and specific-
ity rates. Aviles et al. reported 92% sensitivity and 100% 
specificity in cutaneous leishmaniasis detection [24]. 
Similar results were obtained in many other studies [25–
28]. However, in chronic cases, PCR sensitivity drops 
significantly (45.5%) [25]. In addition, PCR is a complex, 
expensive, and time-consuming procedure requiring cer-
tain devices. In this work, we examined the efficiency of 
artificial intelligence to detect leishmaniasis. Fortunately, 
the results were promising. The proposed system pro-
vided the sensitivity and specificities of 35% and 83% in 
detecting CL.

Many machine learning methods have been developed 
over the years which can help learning methods and 
diagnostic systems work more efficiently [29]. Adaboost, 
decision tree, KNN, linear regression, Naïve Bayes, Ran-
dom Forest, and Extra tress are some of these methods. 
Saiprasath G et al. compared these 7 methods in an auto-
mated microscopic malaria detection procedure. The 
two methods, Random Forest and Adaboost proved to 
be more capable of generating desired results in terms of 
accuracy, sensitivity, specificity, and F1-score [30].

High recall rates are equivalent to a smaller count of 
false negatives. In deadly diseases such as Leishmaniasis, 
this percentage matters since infected patients should not 
be left unrecognized with the possibility of incorrectly 
being assumed healthy. Thus, necessary and deserved 
care and treatment can be provided, resulting in a lower 
morbidity and mortality rate. On the other hand, a high 
precision percentage indicates a low number of false 
positives. In some situations, the inadequacy of resources 
could prevent health experts from giving patients the care 
they need. A high number of false positives in a method 
could lead to unnecessary expenditure of resources and 
equipment and an increase in total expenses.

Bearing in mind the mentioned strengths and advan-
tages of using intelligent diagnostic systems, keeping a 
heads-up in certain situations can help prevent any loss 
of efficiency. For example, if images acquired for the 
system contain low resolutions or have numerous dark 
parts (increased pixel count), the classification process 

would take more time, with the possibility of a greater 
number of false positives, thus overall efficacy drops. 
Moreover, these programs might need updates from 
time to time [31]. Thung et  al. introduced Speeded-Up 
Robust Features (SURF)to develop an efficient method 
for automated detection of parasites. This procedure 
uses only images, without any need for learning and/
or boosting algorithms. Unfortunately, the outcome 
was unsatisfactory [31]. Several procedures have been 
shown to perform based on Image Segmentation [32]. 
K-means clustering [33] and U-Net architecture are 
examples of the techniques used in this process. Górriz 
M et  al. achieved promising results using U-Net archi-
tecture for Leishmanial parasite detection [33]. However, 
this method is quite time-consuming (15  h required by 
an NVIDIA GTX Titan x GPU) [33]. Nevertheless, this 
procedure can be performed considerably faster using 
integral image creation and boosting methods such as 
Adaboost [20].

Conclusion
In this study, we proposed an AI-based system for cuta-
neous leishmaniasis detection. For this purpose, the 
Viola-Jones object detection algorithm enhanced by 
the Adaboost method was used. The system provided a 
fairly high sensitivity rate (83%), and moderate specific-
ity rates. In addition, the algorithm is fast and easy to 
use. Overall, the results are promising and show that AI 
techniques can assist with diagnosing and treatment of 
leishmaniasis.
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