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Abstract 

Background:  The CD4 cell count signifies the health of an individual’s immune system. The use of data-driven mod-
els enables clinicians to accurately interpret potential information, examine the progression of CD4 count, and deal 
with patient heterogeneity due to patient-specific effects. Quantile-based regression models can be used to illustrate 
the entire conditional distribution of an outcome and identify various covariates effects at the respective location.

Methods:  This study uses the quantile mixed-effects model that assumes an asymmetric Laplace distribution for the 
error term. The model also incorporated multiple random effects to consider the correlation among observations. 
The exact maximum likelihood estimation was implemented using the Stochastic Approximation of the Expectation–
Maximization algorithm to estimate the parameters. This study used the Centre of the AIDS Programme of Research 
in South Africa (CAPRISA) 002 Acute Infection Study data. In this study, the response variable is the longitudinal 
CD4 count from HIV-infected patients who were initiated on Highly Active Antiretroviral Therapy (HAART), and the 
explanatory variables are relevant baseline characteristics of the patients.

Results:  The analysis obtained robust parameters estimates at various locations of the conditional distribution. For 
instance, our result showed that baseline BMI (at τ = 0.05: β̂4 = 0.056, p−value < 0.0064; at τ = 0.5 : β̂4 = 0.082,

p−value < 0.0025; at τ = 0.95 : β̂4 = 0.145, p−value < 0.0000 ), baseline viral load (at τ = 0.05: β̂5 = −0.564, p−value

< 0.0000; at τ = 0.5 : β̂5 = −0.641, p−value < 0.0000; at τ = 0.95 : β̂5 = −0.739, p−value < 0.0000 ), and 
post-HAART initiation (at τ = 0.05: β̂6 = 1.683, p−value < 0.0000; at τ = 0.5 : β̂6 = 2.560, p−value < 0.0000;

at τ = 0.95 : β̂6 = 2.287, p−value < 0.0000 ) were major significant factors of CD4 count across fitted quantiles.

Conclusions:  CD4 cell recovery in response to post-HAART initiation across all fitted quantile levels was observed. 
Compared to HIV-infected patients with low viral load levels at baseline, HIV-infected patients enrolled in the treat-
ment with a high viral load level at baseline showed a significant negative effect on CD4 cell counts at upper quan-
tiles. HIV-infected patients registered with high BMI at baseline had improved CD4 cell count after treatment, but 
physicians should not ignore this group of patients clinically. It is also crucial for physicians to closely monitor patients 
with a low BMI before and after starting HAART.

Keywords:  Quantile regression, Quantile mixed model, Stochastic approximation of the expectation maximization, 
Asymmetric Laplace distribution, CD4 count, CAPRISA
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Background
CD4 cell counts indicate a sign of the wellbeing of the 
immune system for an individual. It also provides infor-
mation about disease progression. The number of CD4 
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cells of an individual who does not have HIV could 
be somewhere in the range of 500 to 1500  cells/mm3. 
“Individuals living with HIV who have a CD4 count 
above 500  cells/mm3 are usually in good health. Indi-
viduals living with HIV who have a CD4 cell count less 
than 200 cells/mm3 are at high risk of developing severe 
sickness” [1]. HIV therapy is recommended for all indi-
viduals infected with HIV. It is particularly critical for 
patients with low CD4 count to preferably starting 
treatment sooner rather than later, under the current 
WHO recommendation for individuals who test HIV 
positive [2].

The classical regression model about the mean has 
been the commonly applied statistical procedure to 
depict the effects of explanatory variables for continu-
ous outcomes. Despite this, such results based on a fixed 
location of the response distribution may not be relevant 
in many areas, and sometimes the fields of application 
are diverse. Numerous investigators, economic experts, 
monetary stakeholders, clinicians, and legislators have 
revealed a growing interest in group differences across 
the whole population instead of relying solely on the 
average [3–6]. Another approach to studying the central 
location is median regression. The median regression 
approach is robust to the manifestation of outliers and 
when the error distribution is not correctly specified [3, 
7].

Quantile regression (QR) was popularized by Koenker 
and Bassett [7]. It is an extension of median regression 
to examine the covariates’ influence on different quan-
tiles of the entire response distribution. Fixed effects 
could have different impacts across various quantile 
levels. QR allows for a wide range of applications, for 
example, investigating the 5th or 25th percentile (lower 
quantiles) of the response (e.g., CD4 count distribution 
of HIV infected patient) might be of interest in study-
ing patients with lower CD4 cell counts, where individu-
als are at higher risk of developing illnesses. Therefore, 
it is important to study the response distribution across 
all quantiles (e.g., at different CD4 count distribution), 
rather than only the central tendency, such as in mean or 
median regression.

In recent years, mixed quantile regression models have 
become a widely used technique in statistical studies. By 
using quantile-based regression model, it is possible to 
examine the location, scale, and shape of the distribution 
of responses to get an idea of how the covariates affect 
the distribution of responses. It is also more robust to 
outliers when compared to conventional mean regression 
and is invariant to monotonic transformations. There is 
no need to make any Gaussian assumptions concerning 
the response with quantile regression, and further it is 
capable of handling heavy-tailed and asymmetric data. 

As a result, CD4 count can be modeled very well using 
this method.

Many longitudinal studies gather a great deal of infor-
mation about repeated measures that are crucial for 
analyzing disease progression in clinical studies. For 
example, repeated counts of CD4 cells are vital to HIV/
AIDS monitoring; for instance, low levels of CD4 counts 
are signs of serious viral load accumulation, disease pro-
gression, and the need for therapy intervention. Physi-
cians also use them to identify the advantages of medical 
involvement and the risk factors that may lead to poor 
outcomes. In practical statistics, mixed-effects models 
have become quite popular. As a result of their ability to 
handle both between-subjects and within-subjects vari-
ability in longitudinal data, they are often used to ana-
lyze longitudinal data [8]. Mixed-effects models and their 
estimated effects are formulated on the response variable 
via mean regression, accounting for between-subject het-
erogeneity through normally distributed subject-specific 
random effects and random errors. Mixed-effects models 
have been studied extensively (see, for example, [8–12]). 
There are also various strategies applicable to handle 
longitudinal data, for instance, generalized estimat-
ing equations which are conceptually generalized linear 
mixed-effects models. However, all these techniques limit 
the investigation of variations between subjects based on 
the mean of the response variable, and the latter utilize 
parametric models based on the normal distributional 
assumption [3].

Moreover, in some cases, it could be challenging to 
obtain appropriate transformation to normality for the 
response variable, or some strategy to account for out-
liers may be required. An adequate solution to all these 
issues is given by concentrating on the conditional quan-
tiles of the longitudinal outcome [13]. “Conditional QR 
methods, dealing with the complete conditional distri-
bution of the response variable, have been developed 
to grant an analysis of variable effects at any subjective 
quantiles of the response distribution. Furthermore, QR 
techniques do not require any distributional assumption 
on the error; besides that, the error term has a zero-con-
ditional quantile, like the ALD” [14].

The QR method was initially developed in a univariate 
setting. However, the large amount of longitudinal data 
has recently dictated its extension into a mixed-effects 
modeling system by either the distribution-free way [15–
17] or the likelihood-based way in most cases following 
the ALD [18–21]. The likelihood-based quantile mixed 
model additionally makes use of different parametric dis-
tributions, such as an infinite mixture of Gaussian den-
sities [22] and a direct parametric maximum likelihood 
(ML) approach [23]. The distribution-free approaches 
that consist of fixed-effects and weighted generalized 
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estimating equations consider the use of independent 
estimating equations that ignore correlations between 
repeated measurements which leads to loss of efficiency 
[5, 17, 20]. Meanwhile, Geraci and Bottai [19] suggested 
a likelihood-based QR model for longitudinal data that 
accounts for within-subject dependence by incorporating 
subject-level random effects and modeling the residual 
distribution with an ALD. Liu and Bottai [24] developed 
a likelihood-based method to estimate parameters of 
conditional quantile functions with random effects by 
incorporating an ALD for the random error term that is 
not restricted to be normal. The within-subject correla-
tion is taken into consideration by incorporating random 
effects to get unbiased parameter estimates [24]. The 
application of QR for mixed-effects models has received 
increasing consideration in wide-ranging areas of study, 
including marine biology, environmental science, car-
diovascular disease, and ophthalmology [19, 20, 25–28]. 
Following the version of the quantile mixed model of 
Galarza [18], this study aims to model the longitudi-
nal CD4 count of HIV-infected patients using quantile 
mixed-effects models using the likelihood-based func-
tion that uses ALD for the error term. The study employs 
data from the CAPRISA 002 AI Study. In this study, we 
will demonstrate how quantile mixed model can be used 
to estimate covariate effects at different locations of the 
conditional distribution that communicates a wide-range 
and more complete picture of the effects.

Methods
Data description
This study used the Centre of the AIDS Programme of 
Research in South Africa (CAPRISA) 002 Acute Infec-
tion (AI) Study data conducted at the Doris Duke Medi-
cal Research Institute (DDMRI) at the Nelson R Mandela 
School of Medicine of the University of KwaZulu-Natal 
(UKZN) in Durban, South Africa [29–33]. CAPRISA 
started the CAPRISA 002 AI study between August 2004 
and May 2005 by enrolling women who are at high risk 
of HIV infection for follow-up with an intense on-going 
examination to help estimate HIV infection rates within 
the study, including providing intense aftercare advice 
to those dropping out prematurely, the careful follow-up 
to study disease progression, and CD4 count and viral 
load evolution [29–33]. Detail description of the design, 
development, and procedures of the CAPRISA 002 AI 
study population can be found here [29, 30].

When an infected person’s body indicates symptoms of 
being incapable of adequately controlling the virus and 
their CD4 count drops below a specific cut point, they 
were initiated on therapy. A deficient level of CD4 count 
causes the weak immune system of an HIV-infected 
person. In the absence of treatment or without viral 

suppression, the person is susceptible to opportunistic 
infections (OIs). This increases the risk of the new and 
ongoing Coronavirus Disease 2019 (COVID-19) infec-
tions and underlying illnesses [31–33]. HAART is an 
effective way of preventing these infections and diseases. 
By suppressing and preventing the virus from making 
copies of itself, HAART aims to decelerate or prevent 
the progression to AIDS and loss of life for HIV-infected 
people. The body’s immune system is less damaged, and 
HIV infection complications are decreased when the 
level of the virus in the blood is low or “undetectable” 
through HAART [31–33]. This is also significantly reduc-
ing the likelihood of transmitting HIV to partners.

The HIV/AIDS epidemic and other sexually transmit-
ted diseases severely impact human health, especially the 
well-being of women and young girls [31–33]. “The con-
sequences of HIV/AIDS stretch beyond women’s health 
to their part as moms and caregivers and their commit-
ment to their families’ economic support. The social, 
development, and health consequences of HIV/AIDS and 
other sexually transmitted illnesses ought to be consid-
ered from a gender perspective” [34–36]. Apart from sex-
specific issues, HIV therapy algorithms for women are 
similar to that of men [31]. The interaction between the 
clinician and the changing HIV epidemiology will pro-
vide the clinician with a technique to identify patients at 
high risk of HIV infection and clarify which rules should 
be applied to avoid sequential HIV transmission [31–33]. 
Although ART suggestions are the same for all patients, 
the study of CD4 count of HIV-infected patients, in 
conjunction with individual differences, will help clini-
cians to get through and interpret potential information 
precisely due to patient specific-specific effects [31, 33, 
37–39].

Quantile mixed‑effects model
Quantile regression (QR) is an advanced statistical tech-
nique to study the predictors’ heterogeneous effects at 
the conditional distribution of the outcome. Instead 
of modeling only the mean value like the conventional 
regression methods, quantile regression enables more 
fully to explore the data by modeling the conditional 
quantiles, for example, the 5th and 95th percentiles of 
the response distribution [33]. For these reasons, it has 
become more prevalent in several epidemiological and 
economics studies. For instance, Yirga et  al. [40] stud-
ied how children’s BMI varies with age and other factors 
using quantile regression. There are several other applica-
tions of quantile regression based on uncorrelated data, 
among which public health, bioinformatics, health care, 
environmental science, ecology, microarray data analysis, 
and survival data analysis [13, 41–51].
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The quantile level is frequently signified by the 
Greek letter τ , and the conditional quantile of y given 
x is often written as Qτ (y|x) . The quantile level τ is 
the probability Pr[y ≤ Qτ (y|x)] , and it is the value of 
y below which the proportion of the conditional 
response population is τ . For a random variable y with 
a probability distribution function F

(
y
)
= Pr

(
Y ≤ y

)
 , 

the τ quantile of y is defined as the inverse func-
tion Q(τ) = inf

{
y : F(y) ≥ τ

}
 , τǫ(0, 1) . Particularly, 

the median is Q(0.5) . Let yi denote a scalar response 
variable with conditional cumulative distribution 
function Fyi , whose shape is unspecified and xi the 
corresponding covariates vector of dimension k × 1 
for subject i, i = 1, . . . , n . Then, following Koenker 
and Basset (1978), the τ th(0 < τ < 1) quantile regres-
sion modeled is written as Qτ

(
yi|xi

)
= x

′

i
βτ , where 

Qτ

(
yi|xi

)
≡ F−1

yi
(•) , which is the quantile function 

(or the inverse cumulative distribution function) of yi 
given xi estimated at τ , and βτ is a column vector of 
regression parameters corresponding to the τ th quan-
tile. On the other hand, this expression can be written 
as

where εi is the error term whose distribution (with den-
sity fτ (•) ) is restricted to have the τ th quantile to be zero, 
that is, 

∫ 0
−∞

fτ (εi)dεi = τ [24, 52]. “The error density 
fτ (•) is often left unspecified in the classical literature” 
[52]. Thus, the estimator β̂τ proceeds through linear pro-
gramming (LP) by minimizing

where ρτ (•) is the so  called loss (or check) function 
defined by ρτ (u) = u(τ − I{u < 0}) with u being a real 
number and I{•} is the indicator function. Thus, β̂τ is 
called the τ th quantile regression estimate [5, 13, 43, 
53]. The parameter βτ and its estimator β̂τ depends on 
the quantile τ , because of different choices of τ estimate 
different values of β [24]. For this reason, the interpreta-
tion of βτ is specific to the quantile being estimated, the 
intercept term denotes the baseline predicted value of the 
response at specific quantile τ , while each coefficient can 
be interpreted as the rate of change of the τ th response 
quantile per unit change in the value of the correspond-
ing predictor variable (ith regressor) keeping all the other 
covariates constant.

The objective function of the conditional quantile esti-
mator, β̂τ , in Eq. (2) proceeds by minimizing

(1)Qτ

(
y|xi

)
= x

′

iβτ + εi, withQεi(τ |xi) = 0,

(2)β̂τ = argmin
βǫRP

∑n

i=1
ρτ (yi − x

′

iβτ ),

where i : yi ≥ x
′

i
β for under prediction, and i : yi < x

′

i
β 

for overprediction [5]. Since the above objective function 
is nondifferentiable, the gradient optimization methods 
are not applicable; instead, LP methods can be used to 
obtain H(βτ ) [41, 54, 55]. For more details and a sum-
mary of quantile regression, see, for example, Davino 
et al. [3], Konker and Basset [7], Konker [13], Buchinsky 
[41], Koenker and Hallock [43], or Yu et al. [49].

As the check function (ρτ (•)) in Eq.  (2) is not differen-
tiable at zero, we cannot extract specific solutions to the 
minimization problem. Hence, LP procedures are often 
used to achieve a relatively fast computation of H(βτ ) [52, 
56]. A natural link between minimization of the quantile 
check function and ML theory is given by the assumption 
that the error term in Eq.  (1) follows an ALD [53, 57]. A 
connection between the minimization of the sum in Eq. (2) 
and the ML theory is provided by ALD [58]. Other forms 
of Laplace distribution were summarized by Kotz et al. [59] 
and Kozubowski and Nadarajah [60]. ALD that is closely 
associated with the loss function for QR has been exam-
ined in several works of literature [19, 24, 52, 57, 58].

The conventional QR is based on the median, or other 
quantile levels, by assuming a continuous or Gaussian 
distribution. QR has been extended to count regression, 
which is a special case of the discrete variable model [55, 
56, 61–64]. However, the distribution function of a dis-
crete random variable is not continuous, and the objective 
function of the conditional quantile Qτ (y|x) for a discrete 
distribution cannot be a continuous function of x such 
as exp(x′

β) [61]. Machado and Silva [64] overcome this 
restriction by developing a continuous random variable 
whose quantiles have a one-to-one relation with the quan-
tiles of y , a count variable. When count data consists of 
severe outliers or multiple distributional components that 
do not reflect a known underlying probability distribution, 
quantile count models may be a useful alternative. Further-
more, QR models all of the quantiles of the discrete distri-
bution and covers the entire range of counts [62]. Detailed 
discussions about quantile count models for independent 
data are available in Winkelmann [61], Machado and Silva 
[64], Hilbe [62, 63], Cameron and Trivedi [55, 56], and a 
recent application of this model can be found in Winkel-
mann [65] and Miranda [66].

(3)

H
(
βτ

)
=

∑

i

τ |εi| +
∑

i

(1− τ )|εi|

=

n∑

i:yi≥x
′

i
βτ

τ |yi − x
′

iβτ |

+

n∑

i:yi<x
′

i
βτ

(1− τ )|yi − x
′

iβτ |, 0 < τ < 1
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Mixed-effects models characterize an ordinary and con-
ventional type of regression methods used to examine 
data coming from longitudinal studies. The general linear 
mixed-effects model is defined as

where Y i is the ni × 1 vector of the response variable, X
′

i 
is a known ni × p design matrix that includes covariates 
for the fixed effects, β is p× 1 vector of population-aver-
aged fixed-effects, Z

′

i with the dimension of ni × r known 
design matrix for random effects, ui is r × 1 vector of 
random effects, ui ∼ N (0,�u), and εij is the independent 
and identically distributed random errors, εij ∼ N (0, σ 2) . 
Thus, the τ th quantile linear mixed-effects model, which 
were developed by Geraci and Bottai [20] as an extension 
of the QR model with a random intercept of Geraci and 
Bottai [19], of a continuous response Y i , has the form

where yij is the response of subject i at j th measurement, 
xij indicates covariate vector of i th subject at j th meas-
urement for fixed effects, zij indicates covariate vector of 
i th subject at j th measurement for the random effects ui , 
and random errors ετ ,ij ∼ ALD(0, σ , τ ) , which are also 
dependent on τ . βτ is the coefficient of fixed-effects cor-
responding to the τ th quantile, and the response variable 
yij , conditional on xij , ui , for i = 1, . . . , n, j = 1, . . . , ni and 
σ are assumed to be conditionally independently distrib-
uted as ALD with the density given by

The random effects ( ui’s) are assumed to be distributed 
as ui

iid
∼ Nr(0,�) , where the dispersion matrix  � = �(α) 

relies on unknown and reduced parameters α , which 
is the distinct elements of � , and the random errors 
εij ∼ ALD(0, σ) [18, 52]. Then a likelihood for yij at τ th 
quantile is

Based on the likelihood of conditional quantile of yij , 
it is suggested that the maximization of the likelihood in 
Eq. (5) with respect to the parameter βτ is equivalent to 
the minimization of the loss function in Eq. (7). Thus, we 
can estimate the coefficient of fixed-effects correspond-
ing to the τ th quantile ( βτ ) by minimizing the objective 
function of Eq. (6), which can be expressed as

Y i = X
′

iβ + Z
′

iui + εij , i = 1, . . . , n, j = 1, . . . , ni,

(4)Qτ

(
yij|xij ,ui

)
= x

′

ijβτ + z
′

ijui + ετ ,ij , 0 < τ < 1

(5)

f
(
yij |xij ,ui , σ

)
=

τ (1− τ )

σ
exp

{

−ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)}

.

(6)

L
(
βτ , σ , τ

)
=

τn(1− τ )n

σ n
exp

{

−

n∑

i=1

∑ni

j=1
ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)}

More details regarding the estimation process of quan-
tile mixed-effects models are available here [18, 19, 24, 
58].

Stochastic approximation of the expectation maximization
The study examines quantile regression for linear mixed-
effects models (QR-LMM) of Galarza [18] that follows 
the SAEM algorithm for determining exact ML estimates 
of the fixed-effects and the general variance–covariance 
matrix �τ = �(θτ ) of the random effects parameters 
for the specific quantile. The Expectation–Maximiza-
tion algorithm, also known as the EM algorithm, which 
was suggested by Dempster et al. [67], is a popular tech-
nique for iterative computation of ML estimates when 
the observations are regarded as incomplete data, which 
incorporates the ordinary or standard elements of miss-
ing data; however, it is much broader than that [68]. 
There are two steps in every iteration of the EM algo-
rithm: an expectation, or E-step, followed by a maximiza-
tion (M-step). “In the former action, the incomplete data 
are estimated given the observed data and current esti-
mate of the model parameters under the assumption of 
missing at random (MAR) for the incomplete data. In the 
later step, the likelihood function is maximized under the 
assumption that the incomplete/missing data is known” 
[67]. The detailed explanations of these processes, their 
related analytical clarifications for successively more 
common sorts of models, and the basic theory underly-
ing the EM algorithm are given by Dempster et al. [67]. 
A book devoted entirely to the general formulation of 
the EM algorithm and its basic properties and applica-
tions has been provided by McLachlan and Krishnan 
[68]. Moreover, the success of the EM algorithm is well 
documented and can be found in numerous statistical 
literature.

Even though the EM algorithm is popular, Delyon 
et al. [69] pointed out that, in some situations, it is not 
applicable due to the fact that the E-step cannot be car-
ried out in a closed-form. To deal with these issues, 
Delyon et al. [69] presented a simulation-based SAEM 
algorithm based on stochastic approximation (SA) as 
an elective to the MCEM, standing for Monte Carlo 
EM. “While the MCEM requires a consistent incre-
ment of the simulated data and regularly a substantial 
number of simulations, the SAEM versions guarantee 
convergence with a fixed and/or small simulation size” 
[69–71]. The SAEM algorithm restores the E-step of the 

(7)

H∗(βτ ) = min
βτ

∑n

i=1

∑ni

j=1
ρτ

(
yij − x

′

ijβτ − z
′

ijui

σ

)
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EM algorithm by one iteration of a stochastic (proba-
bilistic) approximation procedure, whereas the M-step 
is consistent [71]. The E- and M-steps of the EM and 
SAEM procedures are highlighted as follows.

Let �o(̂θ) = logf (Yobs; θ) denotes the maximi-
zation of log-likelihood function based on the 
observed data (Yobs) , and given q represents miss-
ing data, Ycom = (Yobs, q)

′ denotes the complete data 
with observed and missing data, thus �c(Ycom; θ) be 
the complete log-likelihood function, and θ̂k indi-
cates the evaluation of θ at the k th iteration. Then 
the EM algorithm with missing data that maximizes 
�c(Ycom; θ) = logf (Yobs, q; θ) iteratively and converges 
to a stationary point of the observed likelihood under 
mild regularity conditions [18, 71], go through in two 
steps:

•	 E-step: Consists computing of the conditional 
expectation of �c(Ycom; θ).

•	 M-step: Computes the parameter values θ̂k+1 by 
maximizing S

(

θ|̂θk

)

 with respect to θ.
	 The SAEM algorithm, on the other hand replaces 

the E-step by stochastic approximation, presented 
by Galarza [18] summarized as follows:

•	 Simulation (E-step): Generate q(�o, k) sample 
(simulation of the missing data at iteration k ), 
� = 1, 2, . . . ,m , from the conditional distribution of 
the missing data f

(
q|θk−1,Yobs

)
.

•	 Stochastic approximation: Update S
(

θ|̂θk

)

 accord-
ing to

•	 M-step: Maximize θ̂k according to

this is equivalent to finding θ̂k+1ǫ� such that 
S
(

θ̂k+1

)

≥ S
(

θ̂k

)

∀θǫ� , where δk is a smoothing param-
eter (a sequence of decreasing non-negative numbers) 
as given by Kuhan and Lavielle [72, 73], and m is the 
number of simulations suggested to be less than or 
equal to 20 [18]. The choice of δk recommended by 
Galarza [18] is given as follows:

S
(

θ|̂θk

)

= E
{

�c(Ycom; θ)|Yobs, θ̂k
}

S
�

θ|�θk

�

= S
�

θ|�θk−1

�

+ δk




1

m

m�

�=1

�c
�

Yobs, q
�
�o, k

�
|�θk; θ

�

− S
�

θ|�θk−1

�





θ̂k+1 = argmax
θ

S
(

θ|̂θk

)

,

where cǫ(0, 1) is a cut point that regulates the percentage 
of initial iterations with no memory, and W  is the maxi-
mum number of iterations.

For more points of interest, however, see Jank [70], 
Meza et al. [71], or Kuhn and Lavielle [72, 73]. Further-
more, details of these algorithms for estimating the 
parameters of the QR-LMM are presented by Galarza 
[18] and Galarza et  al. [21]. “The SAEM algorithm has 
proven to be more effective for computing the ML esti-
mates in mixed-effects models due to the reusing of 
simulations from one iteration to the next in the smooth-
ing phase of the algorithm” [18, 71–73]. The SAEM algo-
rithm is employed in the R package qrLMM.

Results
CD4 cells are the utmost target of HIV infection, and the 
CD4 count is used as a health marker for an individual’s 
immune system. Hence, it is of interest to investigate 
the evolution of CD4 count and disease progression 
of an individual over time, especially for HIV-infected 
patients. Consequently, this study analyzes the repeated 
CD4 count of HIV-positive patients registered in the 
CAPRISA 002 AI study by employing a parametric quan-
tile regression mixed-effects model based on the asym-
metric Laplace distribution. The CAPRISA 002 AI study 
dataset consists of repeated CD4 count measurements 
and some other covariates of 235 individuals. There were 
a total of 7019 observations from the 235 women; each 
subject was measured several times, ranging from 2 to 
61 months, with a median equal to 29. Table 1 illustrates 

a summary of the patients’ baseline characteristics. The 
patients’ age at enrollment ranges from 18 to 59, with the 
median age being 25  years. Q0.05 , which is a value that 
has 5% of the observation smaller or equal to it, indicates 
that 5% of the patients had a square root of CD4 count 
below or equal to 16.4 at enrollment. Q0.95 is similarly 
a value that shows 95% of the observation smaller or 
equal to it; said otherwise, 5% of the patients are greater 
than it. Therefore, Table 1 indicates 5% of the study par-
ticipant had a square root CD4 count greater than 31.4 
at enrollment. Moreover, the study participants had a 
mean BMI of 28.93 with minimum and maximum BMI of 
17.89 and 54.89 at baseline. The median log baseline VL 
of the patients was 10.26 with minimum and maximum 

δk =

{
1 for 1 ≤ k ≤ cW

1
k−cW

for cW + 1 ≤ k ≤ W ,
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log baseline VL of 0 (Not detected) and 15.52, respec-
tively (IQR = 2.91). Additional features on this dataset 
can be found here [29, 30, 32, 33]. We analyze this dataset 
intending to explain the different conditional distribution 
of the square-root-transformed CD4 count as a func-
tion of sets of covariates of interest through modeling a 
framework of response quantiles.

The linear mixed-effects model form of the data can be 
specified as:

where yij is the transformed continuous form of CD4 
count ( 

√

CD4 count ) at the jth time point for the ith 
subject, t is the time measured in months from the 
start of the study, BMI indicates the patient’s baseline 
BMI, LVL = log of baseline VL, ART is the dichotomous 

HAART initiation (0 = pre-HAART, 1 = post-HAART), 
Age is patient’s age at baseline, b1i indicates the random 
intercept, b2i and b3i indicates the random slopes (for 
time and square root time respectively) for subject i , and 
εij the measurement error term, assuming ALD, for 235 
subjects.

The information criteria are used to compare four 
models. The models were compared based on the 0.5th 
quantile (median regression). The linear quantile mixed-
effects model with random intercept and slopes (Model 
4, see Table  2) was selected as the best model because 
the chosen model achieved the smallest Akaike infor-
mation criteria (AIC), Bayesian information criteria 
(BIC), Hannan–Quinn information criteria (HQC), and 
the largest Log-likelihood (LL) (see Table  2). Therefore, 
we examine the square-root-transformed CD4 count 

yij =β1 + β2ti + β3
√

ti + β4BMIi

+ β5LVLi + β6ARTi + β7Agei + b1i

+ b2iti + b3i
√

ti + εij,

of HIV-infected patients as a response while account-
ing for Baseline BMI, age, log baseline VL, and HAART 
initiation as predictor variables across various quan-
tiles based on Model 4 (Table  3). A series of QR-LMM 
at τ = 0.05, 0.25, 0.5, 0.75, 0.85 , and 0.95 are performed 
to get a complete picture of the effects (see, Table 3, and 
Additional files 1, 2).

Random effect models that were examined for the 
analysis

As can be observed from Table  3, the intercept ( β1 ), 
which is the predicted value of the square-root-trans-
formed CD4 count keeping all the other covariates zero, 
differ significantly across the quantiles, while time ( β2 ), 
square root of time ( β3 ), baseline BMI (β4) , the log of 
baseline VL ( β5 ), and post HAART initiation ( β6 ) sig-
nificantly affect the CD4 count across all quantiles. In 
addition, although age ( β7 ) is found to have a positive 
and almost constant influence on the CD4 count across 
all quantiles, its effect is non-significant (Table  3). We 
can also see from Table 3; there is a remarkable positive 
effect of baseline BMI on square root CD4 cell count 
( 
√

CD4 count ) from low quantiles to higher quantiles. 
Whereas, from low to more upper quantiles, the negative 
effect of baseline VL on the count of CD4 cells increases 
gradually. This indicates that when the VL at enrollment 
is high (baseline VL at higher quantiles), its negative 

Model 1: Time (Random slope model )
Model 2: Intercept, Time (Random intercept and slope model )

Model 3: Time,
√

Time (Random slopes model )

Model 4: Intercept, Time,
√

Time (Random intercept and slopes model )

Table 1  Summary of patients’ baseline characteristics

Variable Analysis

Mean Median Minimum Maximum Q0.05 Q0.95 IQR

SQRT_CD4 count 23.44 22.89 13.49 39.49 16.40 31.40 5.78

Baseline BMI 28.93 27.24 17.89 54.89 20 43.70 9.66

Log_Baseline VL 10.09 10.26 0 (undetected) 15.52 6.19 13.13 2.91

Age at baseline 27.15 25 18 59 20 41 8

Table 2  Comparison of random effects models for QR-LMM at 
the 0.5th quantile

Random effects AIC BIC HQC LL

Model 1 39,670.99 39,725.84 39,689.89 − 19,827.50

Model 2 35,072.84 35,141.41 35,096.47 − 17,526.42

Model 3 35,726.22 35,794.79 35,749.85 − 17,853.11

Model 4 33,685.92 33,781.91 33,718.99 − 16,828.96
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effect on the immune systems increases (Table 3). From 
low quantiles to upper quantiles, the post HAART ini-
tiation effect on CD4 cell counts has an increasing trend, 
and then at high quantile 0.95, its effect begins to decline.

R package qrLMM() sample outputs using CAPRISA 
002 Acute Infection Study data across all fitted quantile 
levels can be found in Additional files 1, 2.

The results in graphical representation follow-
ing QR-LMM over the framework of quantiles 
τ = {0.05, 0.25, 0.5, 0.75, 0.85, 0.95} are displayed in Fig. 1. 
The graph shows that the 95% confidence interval for 
the covariates effect and the nuisance parameter σ . The 
figure reveals that the effect of baseline BMI ( β4 ), and 
post HAART initiation ( β6 ) become more prominent 
across quantile levels, with their effect becoming more 
for higher conditional quantiles. Additionally, although 
the effects of time (β2) and baseline VL ( β5 ) exhibit a sig-
nificant positive and negative influence, respectively, on 
CD4 counts across all quantiles, the difference changes 
with regard to the lower quantiles. The σ̂ is symmetric 
about τ = 0.5 , taking its maximum value at that point 
and decreasing for higher quantiles. The convergence of 
estimates for all parameters was also evaluated using the 
graphical criteria (see Additional files 1, 2).

Conclusions
This study considered a quantile mixed-effects model 
with a likelihood-based function that adopts an ALD for 
the error term. We used the SAEM algorithm for deter-
mining exact ML estimates of the covariates effect and 
variance–covariance elements across a set of quantiles. 
We applied this methodology to the CAPRISA 002 AI 
Study data and illustrated how the procedure can be used 
to obtain robust parameters estimates when the interest 
is to get the estimation not only on the central location 

but also on the non-central locations of the conditional 
distribution, which brings a comprehensive and more 
complete picture of the effects. A series of QR-LMM at 
τ = 0.05, 0.25, 0.5, 0.75, 0.85 and 0.95  were estimated 
(Table 3, and Additional files 1, 2), and the results were 
discussed.

Since quantile inference for discrete longitudinal 
data cannot thus be carried out directly yet, we mod-
eled a continuous approximation form of the quantile 
function by using square-root-transformed CD4 count 
as the response variable. Time since seroconversion, 
HAART initiation, and baseline characteristics of the 
patients such as BMI, age, and VL was included in 
the study. It was found that except age, all the stud-
ied variables were found to have a significant effect 
on CD4 cell counts of HIV-infected patients across 
all quantiles. Although significant CD4 cell recov-
ery in response to post HAART initiation across all 
quantiles was recognized, HIV-infected patients who 
were enrolled in the treatment with a high level of 
VL showed a significant negative effect on CD4 cell 
counts at upper quantiles [33]. Even though patients 
with higher BMI at baseline have improved CD4 cell 
count overtime after the treatment, they should not be 
ignored clinically. The study also suggested that physi-
cians should carefully monitor patients with low BMI 
before and after the treatment because BMI can influ-
ence drug metabolism and, consequently, the immuno-
logical response to HAART [31, 33]. With the growing 
recognition of the quantile mixed-effects model, it 
looks practical that the methodology will be extended 
to a vast range of statistical applications such as binary 
data, multi-level models, survival analysis, and other 
areas of application, and these shall be the subject of 
future works.

Table 3  Parameter estimates for CAPRISA 002 AI study data across several quantiles

* Significance at 5% level. See, Additional file 1, for more significant test results and confidence intervals

Parameter Q̂0.05 (SE) Q̂0.25 (SE) Q̂0.5 (SE) Q̂0.75 (SE) Q̂0.85 (SE) Q̂0.95 (SE)

Intercept 19.996 (1.161)* 22.171 (1.403)* 24.628 (1.464)* 26.595(1.419)* 27.972 (1.420)* 31.381 (1.397)*

Time 0.063 (0.015)* 0.069 (0.013)* 0.056 (0.013)* 0.046 (0.013)* 0.041 (0.013)* 0.034 (0.015)*

SQRT of time − 0.866 (0.142)* − 0.871 (0.129)* − 0.695 (0.117)* − 0.593 (0.119)* − 0.581 (0.124)* − 0.385 (0.162)*

Baseline BMI 0.056 (0.021)* 0.078 (0.024)* 0.082 (0.026)* 0.112 (0.032)* 0.131 (0.033)* 0.145 (0.030)*

Log of baseline VL − 0.564 (0.078)* − 0.568 (0.103)* − 0.641 (0.096)* − 0.713 (0.093)* − 0.714 (0.089)* − 0.739 (0.084)*

Post HAART initiation 1.683 (0.054)* 2.125 (0.073)* 2.560 (0.088)* 3.021 (0.096)* 3.114(0.097)* 2.287 (0.089)*

Age 0.021 (0.025) 0.029 (0.029) 0.029 (0.031) 0.029 (0.032) 0.026 (0.032) 0.013 (0.030)

Log-lik − 18,454.68 − 17,169.85 − 16,828.96 − 17,344.63 − 17,952.50 − 19,088.77

AIC 36,937.36 34,367.69 33,685.92 34,717.25 35,933 38,205.55
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Fig. 1  Point estimates and 95% confidence bands for model parameters following the QR-LMM to the CAPRISA 002 AI Study data across various 
quantiles
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