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Abstract 

Background:  Identifying the biological subclasses of septic shock might provide specific targeted therapies for the 
treatment and prognosis of septic shock. It might be possible to find biological markers for the early prediction of 
septic shock prognosis.

Methods:  The data were obtained from the Gene Expression Omnibus databases (GEO) in NCBI. GO enrichment and 
KEGG pathway analyses were performed to investigate the functional annotation of up- and downregulated DEGs. 
ROC curves were drawn, and their areas under the curves (AUCs) were determined to evaluate the predictive value of 
the key genes.

Results:  117 DEGs were obtained, including 36 up- and 81 downregulated DEGs. The AUC for the MME gene was 
0.879, as a key gene with the most obvious upregulation in septic shock. The AUC for the THBS1 gene was 0.889, as a 
key downregulated gene with the most obvious downregulation in septic shock.

Conclusions:  The upregulation of MME via the renin-angiotensin system pathway and the downregulation of THBS1 
through the PI3K–Akt signaling pathway might have implications for the early prediction of prognosis of septic shock 
in patients with pneumopathies.
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Background
Septic shock, characterized by circulatory and cellular 
abnormalities, is associated with substantial morbidity 
and mortality [1]. The worldwide mortality rate of sep-
tic shock was > 40% in 2016 [2, 3], making septic shock 
a major healthcare problem globally. It plays an impor-
tant role in the morbidity and mortality of patients in the 

intensive care unit and results in substantial health care 
costs [4, 5].

Although much progress has been made in diagnosing 
and treating septic shock, mortality remains unaccept-
ably high [6]. A consistent increase in sepsis has been 
shown over the past two decades [7], its incidence is pre-
dicted to increase rapidly because of the sepsis observed 
in COVID-19 [8]. It is known that certain genes and 
signaling pathways participate in the occurrence of sep-
tic shock in children [9]. Identifying biological subclasses 
of septic shock might provide specific targeted therapies 
for the treatment and prognosis of septic shock [10, 11]. 
Studying the molecular mechanism of septic shock is cer-
tainly important [9].

Open Access

*Correspondence:  songjingshifz@163.com; caolalin0929@163.com
†Songchang Shi and Xiaobin Pan have contributed equally to this work
2 Department of Endocrinology, Shengli Clinical Medical College of Fujian 
Medical University, Fujian Provincial Hospital, No.134 East Street, Gulou 
District, Fuzhou 350001, Fujian, People’s Republic of China
3 Department of Critical Care Medicine, Shengli Clinical Medical College 
of Fujian Medical University, Fujian Provincial Hospital, No.134 East Street, 
Gulou District, Fuzhou 350001, Fujian, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-021-06888-w&domain=pdf


Page 2 of 8Shi et al. BMC Infectious Diseases         (2021) 21:1190 

We hypothesized that key genes are involved in the 
early stage of septic shock. These genes might be involved 
in the initiation of septic shock, and the mediated molec-
ular changes might affect the prognosis of the disease. 
Therefore, it could be possible to detect the changes in 
gene expression in the early stage of septic shock through 
gene chips. By correlating these changes with the prog-
nosis of the disease, it might be possible to identify bio-
logical markers for the early prediction of the prognosis 
of septic shock.

Materials and methods
Data collection
The data was obtained from the Gene Expression 
Omnibus databases (GEO) in NCBI, a public func-
tional genomics data repository. The expression data-
set GSE33118 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/; 
GSE33118) was obtained from the Affymetrix GPL570 
platform (Affymetrix Human Genome U133 Plus 2.0 
Array), which was submitted by Raffelsberger et al. Sep-
tic shock by pneumopathy was studied prospectively in 
20 patients, whose blood samples were taken within 12 h 
of diagnosis. Preparation, processing, and analysis of data 
were performed using the R software (version 3.6.3). The 
flowchart of this study is shown in Fig. 1.

Identification of differentially expressed genes
The limma package in R was used to normalize and cor-
rect the data [12]. The expression data were screened for 
differentially expressed genes (DEGs) between different 
outcomes with the criteria of |log2fold change (FC)|> 1 
and adjusted P-value < 0.05 [13]. Then, the identified 
DEGs were divided into upregulated and downregulated 
DEGs.

DEGs analyze via GO and KEGG
Gene Ontology (GO) [14] enrichment and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [15–17] path-
way analysis were performed to investigate the functional 

annotation of the up- and downregulated DEGs. The 
expression matrix of the up- and downregulated DEGs 
were analyzed by GO and KEGG enrichment to deter-
mine whether they show statistically significant differ-
ences between different outcomes. A P-value < 0.05 was 
considered statistically significant.

ROC analysis of the significantly enriched DEGs
Up- and downregulated DEGs were considered candidate 
genes to predict the outcome. Receiver operating charac-
teristic (ROC) curves were drawn. Their areas under the 
curve (AUCs) were determined to evaluate the predicted 
value of the key genes using the pROC package in R [18].

Results
Identification of DEGs
There were 54,613 genes in the GSE33118 dataset, 
including 29,647 upregulated and 24,939 downregulated 
genes. Finally, 117 DEGs were identified, including 36 
up- and 81 downregulated DEGs. The volcano map of all 
DEGs is displayed in Fig. 2A. The heatmaps of the top 36 
upregulated genes and the top 81 downregulated genes 
are displayed in Fig. 2B, C.

GO enrichment and KEGG pathway of DEGs
GO categories and KEGG pathways were used to evalu-
ate the up- and downregulated genes. The upregulated 
DEGs were significantly enriched in Molecular Func-
tion (MF), such as phosphatidylinositol-3-phosphate 
binding, sodium channel regulator activity, potassium 
channel regulator activity, extracellular matrix struc-
tural constituent conferring tensile strength, chemokine 
binding, chemokine receptor activity, G protein-coupled 
chemoattractant receptor activity, and C–C chemokine 
binding, as well as in Biological Process (BP), such as 
regulation of polysaccharide metabolic process, amyloid-
beta clearance, regulation of glycogen metabolic process, 
and long-term memory (Fig.  3A). The KEGG pathway 
results revealed that the upregulated DEGs were signifi-
cantly enriched in the renin-angiotensin system, aldos-
terone-regulated sodium reabsorption, ECM-receptor 
interaction, and hematopoietic cell lineage (Fig.  3B). 
Among those results, we will focus on the key genes, 
such as MME, SGK1, and COL9A3 (Fig. 3C, D).

The downregulated DEGs were significantly enriched 
in cellular components (CC), such as protein kinase 
complex, endoplasmic reticulum-Golgi intermediate 
compartment, serine/threonine-protein kinase com-
plex, and cyclin-dependent protein kinase holoenzyme 
complex (Fig. 4A). The KEGG pathway results showed 
that the downregulated DEGs were significantly 
enriched in the PI3K–Akt signaling pathway, p53 sign-
aling pathway, cell cycle, ECM-receptor interaction, 
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Fig. 1  Study flowchart
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Fig. 2  Differentially expressed genes. A Genes differentially expressed between outcome. B The first 36 of up-regulated DEGs. C The first 81 of 
down-regulated DEGs
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and hematopoietic cell lineage (Fig. 4B). We will focus 
on the key genes, such as CD24, MS4A1, HMMR, 
DDIT4, TCL1A, AREG, BUB1, TTK, CCNB2, THBS1, 
and RRM2 (Fig. 4C, D).

Identification of the key genes associated 
with the outcome
There were three upregulated and 11 downregulated key 
genes. Among them, all the key genes showed that they 
could predict the outcome accurately with AUCs > 0.7, 
except for BUB1 (Fig.  5). The AUC for the MME gene 
was 0.879, as a key gene with the most obvious change 
in expression among the upregulated genes. The AUC for 
the THBS1 gene was 0.889, as a key downregulated gene 
with the most obvious change in expression among the 
downregulated genes. The prognostic cutoff concentra-
tion to predict the outcome was chosen after ROC analy-
sis (Fig. 5).

Discussion
Sepsis is a main cause of critical illness and mortality 
all over the world [19, 20]. Septic shock reflects a more 
severe illness with a higher likelihood of death than sep-
sis alone [1]. Septic shock results in multiorgan dysfunc-
tion, including the liver, kidney, and lung [1]. Clinical 
symptoms of early septic shock are often nonspecific, so 
they are easy to miss. The identification of the early signs 
of septic shock might help a timely diagnosis and initiate 
therapy faster [21, 22]. This study examined the biologi-
cal subclasses using bioinformatics and could provide a 
foundation for the molecular diagnosis and prognosis of 
septic shock from pneumopathies.

In this study, as a significantly upregulated gene, MME 
(membrane metalloendopeptidase) might play an impor-
tant role in the prognosis of septic shock through the 
renin-angiotensin system pathway [23], which is acti-
vated to increase the arterial blood pressure in sepsis 
[24]. Indeed, MME can produce Ang-(1–7) (an active 

Fig. 3  Enrichment function of upregulated DEGs via GO and KEGG. A, B Enrichment of GO. C, D Enrichment of KEGG
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form of angiotensin) from Ang-(1–9) [23]. Ang-(1–7) is 
a potent vasodilator that might be participating in the 
dramatic drop in blood pressure often observed in sep-
tic shock [25]. Still, Ang-(1–7) appears to have protec-
tive actions in sepsis [26]. On the other hand, MME has 
also been involved in Ang-(1–12) metabolism, which 
is known to activate the renin-angiotensin system [23]. 
Excessive activation of the renin-angiotensin system 
might further worsen the outcomes of sepsis [27]. Fer-
nandes et al. revealed that a partial blockade of the renin-
angiotensin system might provide an opportunity to 
improve the outcomes of sepsis-induced refractoriness 
to vasoconstrictors [28]. Furthermore, the renin-angio-
tensin system has been recognized to play a major role in 
some biological processes such as coagulation, apoptosis, 
and inflammation [29, 30]. Still, the exact role of MME in 
sepsis remains to be determined.

In this study, as a significantly downregulated gene, 
THBS1 might play an important part in the prognosis of 
septic shock through the PI3K–Akt signaling pathway. 

Mizuta et al. [31] suggested that activating the PI3K/Akt 
signaling pathway contributes to suppressing endothe-
lial apoptosis, inhibits lung hemorrhage and edema, and 
improves murine survival. The morbidity and mortality 
caused by myocardial infarction might be decreased via 
the stimulation of the PI3K/Akt-dependent cascade [32]. 
It was revealed that suppressing inflammatory and anti-
oxidant responses through the PI3K/Akt pathway might 
mitigate the effects of sepsis [33]. In this study, besides 
THBS1, DDIT4, TCL1A, and AREG might be biologi-
cal markers in the prognosis of septic shock by acting 
via PI3K/Akt signaling pathway. Still, the role of THBS1 
in the regulation of the PI3K–Akt signaling pathway in 
cancer is relatively well defined [34], but its role in sepsis 
remains to be determined.

Different metabolomic patterns might have a major 
impact on the development of novel diagnostic methods 
for the early diagnosis and prognosis of septic shock [35]. 
The heterogeneity between DEGs and the specific signal-
ing pathways prompted us to select one gene to be used 
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as a prognostic marker of the outcome. In this study, 
prognostic cutoff concentrations for predicting the out-
come were selected using a ROC curve analysis.

The potential limitations of our study should be con-
sidered. The datasets we used were obtained from a 
public database. This dataset only included data about 
septic shock from pneumopathies. All results were 

obtained using bioinformatics. Future studies are cur-
rently being designed for examining the exact roles 
of MME and THBS1 in the renin-angiotensin system 
and PI3K/Akt signaling pathways in septic shock from 
pneumopathies. Further experiments are needed to 
verify the results of this study and expand the general-
izability to septic shock from other sources.

Fig. 5  ROC of key genes
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Conclusion
In summary, the upregulation of MME and its role in 
the renin-angiotensin system pathway and the down-
regulation of THBS1 and its role in the PI3K–Akt sign-
aling pathway might have important implications for 
the early diagnosis and prognosis of septic shock from 
pneumopathies. This study suggests that the molecular 
typing of septic shock could reveal diagnostic, prognos-
tic, and therapeutic biomarkers for patients with septic 
shock, allowing early diagnosis and management. Still, 
the biomarkers need to be refined, and prognosis mod-
els need to be built.
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