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Abstract 

Background:  To examine whether outdoor transmission may contribute to the COVID-19 epidemic, we hypoth-
esized that slower outdoor wind speed is associated with increased risk of transmission when individuals socialize 
outside.

Methods:  Daily COVID-19 incidence reported in Suffolk County, NY, between March 16th and December 31st, 2020, 
was the outcome. Average wind speed and maximal daily temperature were collated by the National Oceanic and 
Atmospheric Administration. Negative binomial regression was used to model incidence rates while adjusting for 
susceptible population size.

Results:  Cases were very high in the initial wave but diminished once lockdown procedures were enacted. Most 
days between May 1st, 2020, and October 24th, 2020, had temperatures 16–28 °C and wind speed diminished slowly 
over the year and began to increase again in December 2020. Unadjusted and multivariable-adjusted analyses 
revealed that days with temperatures ranging between 16 and 28 °C where wind speed was < 8.85 km per hour (KPH) 
had increased COVID-19 incidence (aIRR = 1.45, 95% C.I. = [1.28–1.64], P < 0.001) as compared to days with average 
wind speed ≥ 8.85 KPH.

Conclusion:  Throughout the U.S. epidemic, the role of outdoor shared spaces such as parks and beaches has been 
a topic of considerable interest. This study suggests that outdoor transmission of COVID-19 may occur by noting 
that the risk of transmission of COVID-19 in the summer was higher on days with low wind speed. Outdoor use of 
increased physical distance between individuals, improved air circulation, and use of masks may be helpful in some 
outdoor environments where airflow is limited.
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Background
The novel severe acute respiratory syndrome corona-
virus-2 (SARS-CoV-2) that causes a potentially deadly 
disease called coronavirus disease 2019 (COVID-19), 
began spreading in China [1], and Italy [2] before arriv-
ing in the United States (U.S.). COVID-19 first hit in the 

U.S. in regions, such as New York (N.Y.) and California, 
where global travelers often arrive into the U.S. [3]. Suf-
folk County, N.Y., experienced its first wave of infections 
early in March 2020, when the pandemic had just arrived 
in N.Y., causing a high degree of transmission and large 
numbers of COVID-related deaths.

COVID-19 transmits via aerosolized viral particles 
that begin shedding before symptoms are evident [4], 
making it difficult to trace patterns or locations where 
exposures are occurring. As a result, approximately half 
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of those diagnosed with COVID-19 report not knowing 
where they may have become infected [5]. One expla-
nation for a lack of known exposures is that COVID-
19 transmits in spaces that are believed to be safe. A 
handful of studies have made some headway in iden-
tifying such situations. For example, one study found 
that COVID-19 could transmit through the air over 
relatively long distances [6] and another highlighted 
the impact of air conditioning vents [7]. A third study 
found that a cluster of 17 cases were traced to indirect 
transmission in shared spaces at a shopping mall in 
Wenzhou, China [8]. Still other studies have revealed 
that individuals in a constricted space could spread 
COVID-19 via inhaled transmission over potentially 
large distances by following airflow within a restaurant 
[7] and the Diamond Princess cruise ship [6].

A recent review concluded that transmission within 
constricted indoor spaces is critically important [9]. 
However, outdoor exposures have been reported, yet 
relatively little is known about conditions that reduce 
safety of outdoor social contacts. There are reports of 
sporadic outbreaks in outdoor environments, including 
at a construction site in Singapore [10, 11], jogging [10], 
or during conversation [12]. Because of much lower risk 
outdoors [13], close outdoor contacts are often described 
as being risk-free, and exposure-mitigating strategies 
have focused on promoting the use of exterior spaces 
when conducting social activities in efforts to mitigate 
risk of exposure. Outdoor gatherings (for example, par-
ticipating in events such as backyard barbecues, sitting 
near to others while watching outdoor events, standing 
in line outside, or socializing outdoors), may be sensi-
tive to circumstances that may influence their protective 
features. If exposure occurs outside, simulation stud-
ies suggest that transmission may be hampered by the 
same factors as are commonly seen in studies of indoor 
transmission including the air turnover rate [13]. Indeed, 
one preliminary study reported evidence of an associa-
tion globally between weather dynamics including lower 
temperatures and lower wind speed with small increase 
in COVID-19 incidence [14] that may be non-linear [15], 
with at least one locality in Indonesia reporting local 
findings supporting this pathway [16].

The present study examined data reported in Suffolk 
County, N.Y., a large suburban county (~ 1.5 million) 
that reported 96,057 cases between March and Decem-
ber 2020. The existence of a non-linearity in associations 
could imply that wind speed is moderated by another 
factor, potentially human activity. In the present study, 
we hypothesized that lower exterior wind speed would 
be associated with an increased risk of transmission 
during days ranging in temperature from 16 to 28  °C 
(degrees Celsius, equivalent to 60–84 degrees Fahrenheit 

[°F]) when individuals were most likely to be socializing 
outside.

Methods
Setting
Suffolk County is a large cousupplnty (2362 square-kil-
ometers [km2]) of approximately 1.5-million people that 
predominantly acts as an exterior suburban community 
serving New York City. The median age is 41.8  years; 
66.6% are non-Hispanic White, 20.2% are Hispanic, 8.8% 
are Black, while the remainder predominantly reports 
being Asian or having two or more races. The median 
household income in Suffolk County is 54.6% higher 
than the national average. Overall, 6.8% of households 
fall below the national poverty line and 5.2% report lack-
ing health insurance. Suffolk County is relatively densely 
populated with 645.6 people/km2.

Measures
To examine the potential for exterior exposure risk, we 
modeled COVID-19 incidence using cases reported to 
the Suffolk County Department of Health from March 
16th, when data first began being recorded reliably using 
an electronic interface, until December 31st, 2020. At that 
time, Suffolk County was enduring a second wave. Daily 
case counts were shared with Stony Brook University to 
support the COVID-19 modeling efforts at the local level. 
After cleaning, county-level data were published online 
to a publicly-accessible database (the Additional file  1 
provides cleaned county-level data merged with other 
variables used in this study). We limited the analysis to 
dates following March 16th, 2020, with the opening of 
multiple drive-through testing sites throughout the area 
and the establishment of regular case-reporting routines. 
Susceptible population estimates integrate overall county 
residential estimates derived from the U.S. census and 
were updated for daily death counts, and for the reported 
number of COVID-19-related disease counts.

Since daily case counts exhibit temporal dependence 
that is primarily determined by the unobserved commu-
nity force of infection, in secondary analyses we exam-
ined an alternative outcome measure of relative change 
in daily case counts compared to an 8-day forward/back-
ward autoregressive moving average [17], as defined by:

The 8-day forward/backward moving average, when 
integrated into the model, serves as a proxy measure of 
underlying force of infection. This allows us to partially 
capture the variability in absolute case counts that is 
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due to “natural” transmission patterns rather than exter-
nal shocks such as wind speed. It is important to note 
that, on average, this measure would be zero when case 
counts remain relatively constant over time, however, this 
measure will track the periods of exponential rise (where 
it will be positive) and decay (where it will be negative) 
of an epidemic’s waves. It is therefore important to take 
these distinct behaviors into account.

Maximal daily temperature, as well as average wind 
speed, were derived from the U.S. National Oceanic and 
Atmospheric Administration data portal (w2.weather.
gov). Data were recorded at a central location at the Mac-
Arthur Airport in Islip, N.Y. Total snowfall and rainfall 
were recorded in inches and converted to centimeters. 
While temperatures 16–28 °C are likely to be protective, 
reduced wind speed impact on these days may emerge 
because individuals are more likely to be socializing 
outdoors where risk is markedly lower. In the summer, 
higher wind speed increases airflow and may reduce risk 
versus in the winter when it may work to push outside 
social contacts to shelter in indoor spaces. When exterior 
temperatures are warm enough (16–28  °C) to allow for 
outdoor social contacts to occur comfortably, we antici-
pated that increased wind speed would reduce overall 
transmission risk. In contrast, on days where exterior 
temperatures were cooler, increased wind speed might 
cause individuals to retreat indoors for social occasions.

Covariates
We adjusted for the number of days since lockdown 
(March 16th, 2020) and days since reopening began (May 
15th, 2020) in Suffolk County, N.Y. To account for differ-
ences in daily reporting patterns, we incorporated a cat-
egorical variable indicating the day of the week that cases 
were reported. Noting that there have been significant 
spread following holidays, we incorporated an indicator 
of holidays that also incorporated the most significant 
weekend nearby. We also included covariates measur-
ing rainfall and snowfall because they may correlate with 
wind speed as well as social activities outdoors. In the 
primary analysis, we also adjusted for the 8-day forward/
backward moving average daily case count.

Statistical modeling
Descriptive characteristics include time-related trends 
in maximal temperature, average daily wind speed, and 
daily case counts. Daily and smoothed trends in maximal 
temperature and in average wind speed were reported.

In the main analysis, the incidence of COVID-19 posi-
tive caseload was reported as case counts per day so 
multivariable-adjusted modeling relied on negative bino-
mial regression [18]. Negative binomial regression was 
chosen over alternatives including Poisson because we 

were concerned about the potential for over-dispersion 
in the outcome [19] since the infectious disease case-
load is highly variable and because COVID-19 appears to 
spread commonly through super-spreading clusters [20]. 
A nine-day lag between exposure and case registration 
was assumed, consistent with epidemiological estimates 
of the incubation period for COVID-19 [21, 22] coupled 
with a two-day testing and one-day reporting lag period 
that has been common in Suffolk County since testing 
became widely available. Unadjusted and multivariable-
adjusted incidence rate ratios (IRR) and 95% confidence 
intervals (95% C.I.) were reported. The interval between 
infection and disease ascertainment is unobserved and 
varies geographically by local testing availability and 
reporting systems: it can be reduced in places where test-
ing is easy to find and lengthened in places where testing 
is difficult or requires hospitalization. As such, we con-
duct a sensitivity analysis considering the range of values 
of time intervals between exposure and case reporting. 
For our lagging period, we allowed four days because 
our experience suggests that it takes two days to report 
testing results to the Department of Health, and an addi-
tional day to report those results publicly. Fifteen days 
was selected as a ceiling for index case analysis to reduce 
the risk of sequential outcomes from prior case/exposure 
cycles consistent with prior publications [23]. However, 
in sensitivity analyses we report results for a 4–13-day 
range to clarify the impact of those choices. We used the 
log-likelihood to compare model fit for different lags.

We analyzed the secondary outcome – a relative meas-
ure of daily case counts calculated as ln(incident cases/
population * 100,000) – using linear regression with the 
same set of covariates as the primary outcome measure 
and exploring the results for a range of reporting lags.

Since we theorized that there is heterogeneity in asso-
ciation between wind speed and COVID-19 transmission 
may depending on temperature, cutoffs for “warm” days 
and for days when wind speed was sufficiently fast were 
determined by comparing Akaike’s information criterion 
(AIC) across multiple models using different details as 
modeled parameters. We compared AIC between mod-
els to determine that 16 °C (60 °F) was an optimal lower 
bound in temperature, while follow-up analyses revealed 
an upper bound of 28 °C (84°F). To account for seasonal-
ity, we also adjusted for the maximal daily temperature. 
Because cutoffs may be useful when adjudicating risk at 
the local level, we used AIC to identify optimal cutoffs for 
wind speed. This resulted in identifying low wind speed 
to be < 8.85 KPH (kilometers per hour (KPH), equivalent 
to approximately 5.5 miles per hour).

Since the relative measure of daily case counts only 
partially adjusts for the community force of infection 
and underlying “natural” epidemic dynamics, we also 
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conducted additional stratified sensitivity analyses 
cut into periods when case counts were relatively flat 
(06/07/2020–11/03/2020) and when the epidemic was 
exponentially increasing (03/16/2020–04/10/2020 and 
11/04/2020–12/31/2020) or decaying (04/11/2020–
06/06/2020). We used two criteria: daily temperature 
and epidemic dynamics pattern (flat versus rising/fall-
ing) to determine subsets for stratified analyses. Analy-
ses were completed using Stata 16/MP [StataCorp].

Results
We begin by showing the number of daily cases over the 
entire observational window (Fig.  1). Cases were very 
high in the initial wave but diminished quickly once lock-
down procedures were enacted.

The average temperature was 19.8 ± 8 °C and the aver-
age daily wind speed was 14.0 ± 5.8 KPH. Trends in daily 
temperature and wind speed are depicted throughout 
the analytic period (Fig. 2). Most days between May 1st, 
2020, and October 24th, 2020, were characterized by 
temperatures 16–28 °C (solid red lines show this range). 
The trend in average wind speed (black dashed line) 
diminished slowly over time and then began to increase 
again in December 2020.

Further interrogating the functional shape of the 
relationship between the wind speed and incidence 
of COVID-19 (Fig.  3) we found that during periods 
where temperatures ranged from 16 to 28 °C, reduced 
wind speed was associated with increased incidence. 
However, on cooler days, when very high wind speeds 
were most common, incidence of COVID-19 appears 
to increase slightly as a function of wind speed though 
this was not evident in multivariable analyses. Using 
the logarithmic transformation to capture tapering 
threshold effects in a multivariable-adjusted model 
examining the impact of wind speed only on days 
that were 16–28  °C. Exploring the implications of 
this threshold effect we found that while an increase 
in wind speed from 5 to 6 KPH was associated with a 
12.56% caseload reduction, a similar increase from 15 

Fig. 1  Trends in daily COVID-19 cases identified in Suffolk County 
from March 16th–December 31st, 2020

Fig. 2  Trends in maximal daily temperatures, expressed in °C, and mean daily wind speed expressed in kilometers per hour in Suffolk County, NY, 
from March 16th–December 31st, 2020. The horizontal red lines show temperatures in the 16–28 °C range
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to 16 KPH was only associated with a 1.16% decrease 
in caseload. Visual inspection showed that on warm 
days (temperatures ranging from 16 to 28  °C) with 
very high wind speed (above 20 KPH) increasing wind 
speed was associated with increased transmission. 
However, using a quadratic transformation we did 
not find this association to be statistically significant 
(P = 0.071).

Unadjusted analyses revealed statistically signifi-
cant associations between higher COVID-19 incidence 
and lower wind speed in 16–28  °C weather (Table  1). 
Multivariable-adjusted analyses similarly revealed that 
results remained statistically significant upon adjust-
ing for confounders.

As noted in the Methods section, optimal tempera-
ture cutoffs were 16–28  °C in temperature, and < 8.85 
KPH in wind speed. Using these cutoffs, in Table 2 we 
examined the risk associated with lower wind speed 
(< 8.85 KPH) on days with maximal temperatures in 
the 16–28  °C range. Analyses revealed that on days 
with temperatures from 16 to 28 °C, exposures to wind 
speed < 8.85 KPH was associated with a 45% increase 
in incidence in multivariable-adjusted models.

Sensitivity analysis
We examined the sensitivity of the results to analytic 
choices by first examining whether reliance on different 
outcomes made differences to the results. For the rela-
tive change in daily case counts compared to an 8-day 
forward/backward moving average, the results were 
substantively similar (B = −  16.12 [−  27.78, −  4.45], 
P = 0.007) on days with temperatures from 16 to 28 °C; in 
other words, days where wind speed was < 8.85 KPH were 
attributed with 16.12% increases in relative incidence 
(Additional file 2: Table S1). We also examined whether 
choices in the lag between exposure and case reporting 
changed our results. While the results shown theoreti-
cally represent the appropriate timing, we also examined 
variation in periods between exposure and case record-
ing from 4 to 13 days. We found that while the nine-day 
reporting average was the best performing within our 
hypothesized observational window (Additional file  2: 
Figure S1). Across all lags, we identified a consistent 
association between slower wind speed days and lower 
follow-up case counts (Additional file  2: Table  S2). We 
examined whether holidays were more impactful depend-
ing on temperature but found that while the effect sizes 

Fig. 3  Average wind speed versus number of incident cases of COVID-19 in Suffolk County from March 16th–December 31st, 2020. The natural 
log function was selected because it performed better (AIC = 4055.4) than alternative specifications including linear (AIC = 4105.3), inverse 
(AIC = 4298.5), and quadratic (AIC = 4057.3). Unadjusted and multivariable-adjusted models are shown in Table 2. Note that the incidence of 
COVID-19 was lagged from wind speeds by nine days
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Table 1  Incidence rate ratios for COVID-19 derived from negative binomial regression showing both unadjusted and multivariable-
adjusted analyses from March 16th–December 31st, 2020

IRR incidence rate ratio, 95% C.I. 95% confidence interval. All models additionally adjust for day of the week in which cases were reported and for the size of the county 
population adjusted for reductions due to death or recovery from COVID-19 during the period of observation. α is a measure of dispersion. P-values derived from 
Student’s T-tests

Unadjusted Multivariable-adjusted

Variable IRR [95% C.I.] aIRR [95% C.I.]

Wind speed (Ln–KPH) when temperature 16–28 °C 1.85 [1.67–2.06]
P < 0.001

1.17 [1.09–1.26]
P < 0.001

Wind speed (Ln–KPH) when temperature ≤ 15 or ≥ 29 °C 1.04 [0.79–1.36]
P = 0.798

0.93 [0.81–1.06]
P = 0.248

Maximal exterior temperature, °C 1.00 [0.99–1.01]
P = 0.677

Days since lockdown 0.95 [0.93–0.97]
P < 0.001

Days since reopening 1.06 [1.04–1.08]
P < 0.001

Holiday adjustment 1.11 [0.92–1.33]
P = 0.264

Snowfall, cm 0.98 [0.92–1.04]
P = 0.540

Rainfall, cm 1.01 [0.94–1.09]
1.02 P = 0.776

Eight-day forward/backward moving average 1.22 [1.20–1.25]
P < 0.001

α 0.98 [0.85–1.13] 0.17 [0.14–0.2]

Table 2  Incidence rate ratios for COVID-19 derived from negative binomial regression showing both unadjusted and multivariable-
adjusted analyses comparing days where wind speed < 8.85 KPH to days with ≥ 8.85 KPH wind speeds from March 16th–December 
31st, 2020

*KPH: kilometers per hour; °C: degrees Celsius; IRR: incidence rate ratio; 95% C.I.: 95% confidence interval. All models adjust for day of the week in which cases were 
reported and for the size of the county population adjusted for reductions due to individuals who had died or become immune due to COVID-19 during the period of 
observation. α is a measure of dispersion. P-values derived from Student’s T test

Unadjusted Multivariable adjusted

Variable IRR [95% C.I.] aIRR [95% C.I.]

Wind speed < 8.85 KPH when temperature 16–28 °C 4.09 [3.16–5.28]
P < 0.001

1.45 [1.28–1.64]
P < 0.001

Wind speed < 8.85 KPH when temperature ≤ 15 or ≥ 29 °C 1.45 [1.04–2.03]
P = 0.029

1.03 [0.88–1.20]
P = 0.717

Maximal exterior temperature, °C 0.99 [0.99–1.00]
P = 0.021

Days since lockdown 0.94 [0.93–0.96]
P < 0.001

Days since reopening 1.07 [1.05–1.09]
P < 0.001

Holiday adjustment 1.12 [0.94–1.34]
P = 0.208

Snowfall, mm 0.93 [0.82–1.06]
P = 0.274

Rainfall, mm 1.02 [0.88–1.20]
P = 0.774

Eight-day forward/backward moving average 1.21 [1.19–1.24]
P < 0.001

α 1.02 [0.88–1.17] 0.16 [0.13–0.19]
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were slightly smaller on days with temperatures from 16 
to 28 °C (interaction B = − 0.18, P = 0.142), these differ-
ences were not statistically significant. Finally, we strati-
fied analysis dates into periods characterized by rising, 
falling, and stable transmission. This analysis resulted in 
the same overall association (aIRR>8.85 KPH = 0.87 [0.75–
1.03]; aIRRLn-KPH = 0.88 [0.75–1.05]) though insufficient 
observations to achieve statistical power (power = 0.65).

Discussion
The COVID-19 pandemic has caused an immense toll 
on the American population and has inflicted enor-
mous economic damage. Current evidence suggests 
that COVID-19 is airborne and is predominantly spread 
indoors. The present study examined variations in wind 
speed under the hypothesis that higher winds may 
disperse COVID-19 viral particles away from people 
socializing outdoors, thereby offering increased protec-
tion among individuals who may have been exposed to 
COVID-19 outdoors. We found that slow average wind 
speed (< 8.85 KPH) was associated with increased inci-
dence of COVID-19 on days that had temperatures sup-
porting socializing outdoors (16–28  °C; aIRR = 1.45 
[1.28–1.64], P < 0.001). This study supports the view that 
while transmission was lowest when days were in com-
fortable ranges (from 16 to 28 °C), on these days the risk 
was highest when wind speed was slow.

This study suggests that low wind speed may reduce 
the protective impact of weather ranging from 16 to 
28  °C. Results align with anecdotal reports from local 
Departments of Health and from the Centers for Disease 
Control and Prevention [24], who have noted that gather-
ings of increased risk include outdoor social gatherings 
such as “Backyard Barbecues”. One interpretation of this 
evidence may be that airborne transmission in shared 
outdoor spaces is feasible on days when the wind is insuf-
ficient to disperse viral particles. For example, wind 
speed in weather outside of the 16–28 °C temperate zone 
may make social activities less pleasant or may increase 
the risk of transmission in outdoor settings with stale air.

The present study represents a step forward to under-
standing the regional role of outdoor wind and tempera-
ture dynamics, and their interrelationships when trying 
to understand COVID-19 infection dynamics. The next 
steps in this research area might include the study of 
microclimate dynamics within regions to determine the 
relevance of architectural design, fencing, and wind flow 
within roads in determining geographical differences in 
disease transmission and exposure dynamics. Under-
standing the geographical distribution of cases result-
ing on wind-less compared to similar windy days may 
help determine other factors, such as population density 
or housing density, that modify impact of reduced wind 

speed. Additionally, multilevel analyses might examine 
the extent to which social activities might be affected 
most by reduced wind speed. Yet, while geographic tar-
gets are critical, further research is also needed to deter-
mine the extent to which reduced wind speed is more, 
or less, impactful with novel COVID variants or with 
other respiratory diseases. One potential output of such 
information may be to inform the creation of a weather 
warning system so that individuals or policymakers could 
issue guidelines or warning systems when masking usage 
might be recommended outdoors or in outdoor spaces at 
risk of reduced wind speed.

Limitations
Despite examining a large population (~ 1.5 million) that 
identified many cases (96,057 between March-December 
2020), this study is limited in examining the experience 
of a single U.S. County. Although there is little reason to 
think that shared indoor spaces would increase on days 
of lower wind speed in the 16–28 °C temperature range, 
we cannot conclusively state that higher wind speed pro-
tected any individuals. Our results were strongly influ-
enced by covariates as evidenced by the change in IRR 
observed in unadjusted versus adjusted models; it is 
always possible that key confounders were missing from 
our model. For example, we could not address the poten-
tial for non-independence that may emerge when indi-
viduals who have previously survived COVID-19 may 
be re-infected. However, sensitivity analyses examining 
the percent change of new cases on a given day relative 
to the eight-day backward/forward average case count 
attempted to address temporal changes in incidence 
patterns directly within the outcome variable, and our 
results were similar. Follow-up research is necessary to 
determine specifics about exposures, including distances 
that COVID-19 viral particles can travel and reliably 
infect individuals and microclimate differences that may 
affect specific geographic differences that may moderate 
these results.

To obtain a measure of wind speed for this analysis, we 
relied on data from a central airport. While this provided 
consistent measures of wind speed across the island, 
these measures may not be generalizable to microcli-
mates occurring in the fenced-in backyards, lea of hills 
and dunes, or forests. Notably, this choice may mean 
that cutoffs used here may not apply in other situations. 
More analysis is necessary if weather data are going to be 
relied upon to help understand caseload in other areas. 
We reported a nine-day exposure-test positive reporting 
lag structure; however, sensitivity analyses suggested that 
a 16-day lag structure may work better. The 16-day lag is 
outside of the expected lag period for cases in our area. 
Still, we felt that it might indicate that case dynamics 
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could proceed from asymptomatic younger individuals 
to cause secondary cases in older individuals reported 
16 days later. As such, future work should anticipate that 
different cutoffs will be necessary when wind speeds are 
measured in other places and in locations where wind is 
highly sensitive to local geography.

Conclusions
Throughout the U.S. epidemic, the role of outdoor 
shared spaces such as parks and beaches has been stud-
ied, and ultimately beaches and parks remained open 
because outdoor gatherings are considerably less risky 
than indoor ones. This analysis does little to suggest 
that either should be closed, since the level of risk due to 
outdoor exposures should be weighed in relation to the 
much higher risk of exposure in shared interior spaces 
such as houses, restaurants, or public transport. Instead, 
this study may suggest that individuals socializing out-
doors may not be completely safe by being outdoors and 
should remain vigilant, especially on days where airborne 
particles may be less likely to disperse due to contextual 
factors such as reduced wind speed, that may reduce 
the benefits of socializing outside. In this case, outdoor 
use of increased physical distance between individuals, 
improved air circulation, and use of masks may be helpful 
in some outdoor environments where airflow is limited.
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