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Abstract 

Background:  Determining factors affecting the transmission of rifampicin (RR) and multidrug-resistant (MDR) Myco-
bacterium tuberculosis complex strains under standardized tuberculosis (TB) treatment is key to control TB and prevent 
the evolution of drug resistance.

Methods:  We combined bacterial whole genome sequencing (WGS) and epidemiological investigations for 37% 
(n = 195) of all RR/MDR-TB patients in Cameroon (2012–2015) to identify factors associated with recent transmission.

Results:  Patients infected with a strain resistant to high-dose isoniazid, and ethambutol had 7.4 (95% CI 2.6–21.4), 
and 2.4 (95% CI 1.2–4.8) times increased odds of being in a WGS-cluster, a surrogate for recent transmission. Further-
more, age between 30 and 50 was positively correlated with recent transmission (adjusted OR 3.8, 95% CI 1.3–11.4). 
We found high drug-resistance proportions against three drugs used in the short standardized MDR-TB regimen in 
Cameroon, i.e. high-dose isoniazid (77.4%), ethambutol (56.9%), and pyrazinamide (43.1%). Virtually all strains were 
susceptible to fluoroquinolones, kanamycin, and clofazimine, and treatment outcomes were mostly favourable 
(87.5%).

Conclusion:  Pre-existing resistance to high-dose isoniazid, and ethambutol is associated with recent transmission 
of RR/MDR strains in our study. A possible contributing factor for this observation is the absence of universal drug 
susceptibility testing in Cameroon, likely resulting in prolonged exposure of new RR/MDR-TB patients to sub-optimal 
or failing first-line drug regimens.
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Background
An estimated half a million tuberculosis (TB) patients 
are eligible for a rifampicin resistant or multidrug resist-
ant (additional resistance to isoniazid) tuberculosis (RR/
MDR-TB) treatment regimen each year [1]. To reduce 

the exceptionally long MDR-TB treatment period (mini-
mum 18  months), high treatment costs, severe drug-
related side effects and thus suboptimal adherence and 
low cure rates in many settings worldwide, in 2016 the 
WHO endorsed a shorter (9–12  months), standardized 
MDR-TB treatment regimen, including seven antibiotics. 
In the intensive phase (4–6 months) patients receive high 
dose isoniazid, ethambutol, pyrazinamide, prothiona-
mide, clofazimine, kanamycin, and a fluoroquinolone. 
The 5 month continuation phase includes ethambutol, 
pyrazinamide, a fluoroquinolone, and clofazimine [2, 3]. 
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The short MDR-TB regimen is recommend for patients 
infected with a RR/MDR Mycobacterium tuberculosis 
complex (MTBC) strain who have not been treated for 
more than 1 month with the above mentioned antibiot-
ics and for whom resistance to fluoroquinolones and 
second-line injectable drugs has been excluded [4]. The 
most recent guidance is for a similar shorter, all-oral 
9–12 month regimen with bedaquiline replacing the sec-
ond-line injectable [5].

Notably, the short course, standardized MDR-TB regi-
men achieved high cure rates (> 85%) in Bangladesh, 
Cameroon, and Niger, however, its implementation in 
settings with high pyrazinamide and ethambutol resist-
ance rates, e.g. in Eastern Europe, was criticized [6–9]. 
Prudent usage with careful follow-up has been recom-
mended when resistance to isoniazid, pyrazinamide or 
second-line injectable drugs is present at the initiation 
of the short MDR-TB therapy [10–12]. Recent studies 
have shown that resistance to individual drugs, except 
fluoroquinolones, at the start of the therapy can be tol-
erated and did not compromise treatment outcomes [2, 
10, 11]. More pronounced effects on treatment outcomes 
were observed when resistance to both a fluoroquinolone 
and pyrazinamide were diagnosed at baseline [2]. Besides 
the elevated risks of treatment failure under standard-
ized treatment regimens, pre-existing drug resistances 
have been linked to increased transmission rates of MDR 
MTBC strains globally [13–15].

In Cameroon, a previous observational prospective 
study of patients treated between 2008 and 2011 reported 
134/150 (89%) patients with successful outcomes on the 
short MDR-TB regimen [16]. Here, we analysed RR/MDR 
strains consecutively sampled from 195 patients between 
2012 and 2015 at the Tuberculosis Reference Labora-
tory Bamenda (TBRL), representing 37.0% (195/527) of 
all laboratory confirmed MDR-TB cases in Cameroon 
during the study period (WHO data repository). We 
employed whole genome sequencing (WGS) and epi-
demiological analysis to define drug resistance profiles 
prior to the initiation of the short MDR-TB therapy, to 
investigate drug resistance proportions over time, and to 
identify factors associated with recent transmission of 
MDR-MTBC strains in Cameroon.

Methods
Study design and study population
We performed a retrospective genomic epidemiological 
study to analyse transmission patterns and risk factors 
for the transmission of RR/MDR MTBC strains in Came-
roon. Specimens from consecutive TB-patients with bac-
teriologically-confirmed RR/MDR-TB received between 
December 31, 2011 and June 26, 2015 at the Tuberculosis 

Reference Laboratory Bamenda (TBRL) were included in 
the study. This laboratory serves as the reference labora-
tory for four geographical regions of Cameroon, cover-
ing an estimated population of approximately 7.8 million 
people and including 40% of the notified TB cases in the 
country from 2012 to 2015 (WHO data). Following the 
National TB Program guidelines, TB culture and drug 
susceptibility testing is performed systematically for pre-
viously treated TB patients, prisoners and known con-
tacts of people with MDR-TB. Initial detection of TB 
disease in Cameroon was performed primarily with acid 
fast bacilli smear microscopy during the study period. 
For people initiating TB treatment with smear-posi-
tive TB, cure was defined as a negative smear at 5 and/
or 6 months on treatment, following the NTP guidance. 
Further details on the data collection and contact tracing 
questionnaires are provided in the Additional file 1.

Phenotypic and molecular drug susceptibility tests
Routine diagnostics were performed at the TBRL 
Bamenda, a laboratory accredited in accordance with 
the recognized International Standard ISO 15189:2012 
(SANAS Accredited Medical Laboratory, No. M0593). 
Molecular tests for rifampicin resistance were performed 
either by Xpert MTB/RIF (Cepheid, U.S.) or Genotype 
MTBDRplus (Hain Life Science, Germany) according to 
the manufacturer’s instructions. The proportion method 
on Löwenstein–Jensen media with WHO recommended 
critical concentrations was employed for phenotypic 
drug susceptibility tests. Further details are provided in 
the Additional file 1.

Next generation sequencing
WGS was performed on an Illumina NextSeq 500 instru-
ment using Nextera XT library preparation kit according 
to manufacturer’s instructions (Illumina, USA). Raw read 
data (fastq files) were deposited in the European Nucleo-
tide Archive under the accession number PRJEB40777, 
and processed with the MTBseq pipeline as described 
previously [17]. Details on the phylogenetic analysis, 
molecular cluster definitions, and genotypic drug resist-
ance prediction can be found in the Additional file 1.

Statistics
A variance analysis to compare proportions of drug 
resistances from 2012 to 2015 was performed with a 
Kruskal–Wallis test and a pairwise Dunn’s post-hoc 
test, considering a significance level of 0.05. Propor-
tions of resistance to individual drugs and 95% confi-
dence intervals (CI) were calculated with the Wilson 
Score interval. We employed univariate and multi-
ple logistic regression models to obtain odds ratios 
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for factors associated with recent transmission, i.e. 
molecular clusters, by using R version 4.0.2 and the 
glm function. Response variables were transformed to 
0 (ungrouped) and 1 (clustered). As predictors for an 
increased transmission likelihood, we analyzed the var-
iables MTBC lineage, number of genotypic resistances, 
age, gender, HIV status, and genotypic resistance to iso-
niazid, ethambutol, pyrazinamide, and prothionamide. 
Other drug resistances were found at very low preva-
lence throughout the study period and were not con-
sidered as predictor variables. Most people included 
in this analysis had a history of TB treatment (84%), 
so treatment history was also not included as a predic-
tor variable. Missing data (NA) was kept as a separate 
category, and categorical data was transformed to fac-
tors. Factors with P < 0.1 in the univariate model were 
included in the multiple logistic regression. The best 
model was determined with a backwards exclusion 
approach aiming for the best statistical support, i.e. 
lowest Akaike information criterion (AIC) value. The 
resulting model was supported by a forward selection 
approach. Differences between patient characteristics 
(included versus excluded patients) were determined 
with chi-squared tests for categorical variables, and 
with a Mann Whitney U test for age. For chi-squared 
tests, we treated missing data as its own category, and 
in addition performed pairwise Fisher exact tests, 
excluding missing data.

Results
Patient characteristics and treatment outcomes
Specimens from 261 patients with RR/MDR-TB were 
received at the laboratory during the study period. Out 
of these 195 (75%) were included in the current analy-
sis. For 66 patients, WGS data was not available because 
specimens could not be either cultured or sub-cultured, 
or extracted DNA was not suitable for WGS. These 66 
excluded patients had similar age, sex, and geographic 
distribution as those included in the analysis; there 
were more excluded patients with an unknown HIV 
status and history of TB treatment relapse (Additional 
file  4: Table  S3). Of the 195 patients with specimens 
included in the analysis, the median age was 34  years 
(IQR 27–43  years), 78 (40%) were female, and 163 
(84%) had a known history of TB treatment. In total, 
149/195 (76.4%) patients started MDR-TB treatment 
in the study period, including 126/149 (84.6%) patients 
with a good MDR-TB therapy outcome, i.e. cured or 
treatment completed, 15/149 (10.1%) patients who died 
after starting MDR-TB treatment, 5/149 (3.4%) patients 
who were lost to follow-up, and 3/149 (2.0%) patients 
who failed the treatment. The remaining 46/195 (23.6%) 

patients did not start MDR-TB treatment and were lost 
to follow-up.

MTBC population structure in Cameroon
Based on 10,838 SNPs, we calculated a maximum likeli-
hood phylogeny using a general time reversible substi-
tution model, and further classified MTBC strains into 
different phylogenetic lineages according to a recently 
proposed SNP barcode from Coll et al. [18] (Fig. 1).

In total, 15/195 (7.7%) MTBC strains belonged to lin-
eage 5/M. africanum, one strain (0.5%) was classified as 
lineage 1, one strain (0.5%) was identified as M. bovis. 
The majority, i.e. 178/195 (91.3%), of patients were 
infected with a lineage 4 MTBC strain. Within lineage 
4, we further stratified the strains to particular sub-lin-
eages as follows: 4.1 (54/195, 27.7%), 4.2 (2/195, 1.0%), 
4.3 (7/195, 3.6%), 4.6 (103/195, 52.8%), 4.8 (11/195, 
5.6%), and 4.9 (1/195, 0.5%) (Fig. 1).

Genotypic drug resistance profiles
In total, we investigated 27 genes associated with 
resistance to any drug in the short MDR-TB regimen 
(Additional file 2: Table S1). With regard to rifampicin 
resistance, we identified 29 different mutations or com-
bination of mutations mainly in the rifampicin resist-
ance determining region of rpoB (Additional file  2: 
Table  S1). Three strains harboured the mutation rpoB 
V170F outside the rifampicin resistance determining 
region described before as rifampicin resistance marker 
[19]. Moreover, 57/195 (29.2%) rifampicin resistant 
strains also had an additional putative compensatory 
mutation in genes coding for the adjacent RNA-pol-
ymerase subunits RpoA or RpoC. We assumed that 
MTBC strains were resistant to high-dose isoniazid 
when they harboured a mutation in the catalase gene 
katG at position 315, or a pre-mature stop codon, or 
a frame shift mutation. Based on this classification, 
we observed high-dose isoniazid resistance in 77.4% 
(151/195, 95% CI 71.1–82.7%) of all strains (Table 1).

Genotypic drug resistance rates to drugs other 
than isoniazid across all patient were as follows: 
ethambutol 56.9% (111/195, 95% CI 49.9–63.7%), 
pyrazinamide 43.1% (84/195, 95% CI 36.3–50.1%), pro-
thionamide 20.0% (39/195, 95% CI 15.0–26.2%), kana-
mycin 0% (0/195, 95% CI 0.0–1.9%), fluoroquinolones 
2.6% (5/195, 95% CI 1.1–5.9%), and clofazimine 1.0% 
(5/195, 95% CI 0.3–3.7%). We observed overall no dif-
ferences (0.21 < P < 0.92, Kruskal–Wallis test) between 
individual drug resistance proportions over the 
3.5 years study period (Fig. 2).
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Fig. 1  Drug resistance and molecular clusters of multidrug resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains in Cameroon. 
Maximum likelihood phylogeny of 195 rifampicin resistant and MDR-MTBC strains from Cameroon (2012–2015). MTBC lineages are color coded, 
stronger colours denote closely related strains (≤ 5 SNP pairwise distance) as surrogate for recently transmitted strains. Genotypic resistances to 
individual drugs are represented by red squares
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MTBC transmission networks
To allocate patients to recent transmission networks, we 
defined clusters based on a strain-to-strain genetic dis-
tance measurement, i.e. a maximum distance of 5 SNPs 
between at least two strains [20–22].

Overall, 85/195 (43.6%) strains were grouped in 29 
different SNP-based clusters each comprising 2–10 

strains. As another measurement of strain relatedness, 
we performed a core genome multi locus sequence type 
(cgMLST) analysis based on a gene-to-gene (allele) dif-
ference [23]. In total, 89/187 (47.6%) MTBC strains 
were assigned to a cgMLST clonal complex with a 
maximum pairwise distance of 5 alleles, mainly con-
firming the previously defined SNP-based clusters and 

Table 1  Univariate logistic regression analysis to identify factors associated with molecular clusters, i.e. as a surrogate for recent 
transmission

P-values < 0.05 indicated in bold text

Factors with P ≤ 0.1 were included in backwards exclusion/forward selection procedures to obtain the best supported multiple logistic regression model, which results 
are reported in the main text only

OR odds ratio

Ungrouped (n = 110) % Clustered (n = 85) % Univariate logistic regression

OR 95% lower 95% upper P value

Age

  > 50 18 16.4 6 7.1 REF

 30–50 51 46.4 44 51.8 2.6 0.9 7.1 0.06

  < 30 34 30.9 30 35.3 2.6 0.9 7.5 0.07

 Unknown 7 6.4 5 5.9 2.1 0.5 9.4 0.31

Gender

 Female 41 37.3 37 43.5 REF

 Male 66 60 46 54.1 0.8 0.4 1.4 0.39

 Unknown 3 2.7 2 2.4 0.7 0.1 4.7 0.75

HIV status

 Negative 50 45.5 51 60 REF

 Positive 33 30 20 23.5 0.6 0.3 1.2 0.13

 Unknown 27 24.5 14 16.5 0.5 0.2 1.1 0.08

Lineage

 Others 7 6.4 10 11.8 REF

 L4.X 49 44.5 26 30.6 0.4 0.1 1.1 0.07

 L4.6 54 49.1 49 57.6 0.6 0.2 1.8 0.39

Genotypic resistances (n) 1.7 (mean) 2.4 (mean) 1.7 1.3 2.3 6.64E−05
(per unit 

increase)

Compensatory mutation

 No 85 77.3 53 62.4 REF

 Yes 25 22.7 32 37.6 2.1 1.1 3.8 0.02
High dose isoniazid

 Susceptible 39 35.5 5 5.9 REF

 Resistant 71 64.5 80 94.1 8.8 3.3 23.5 1.53E−05
Ethambutol

 Susceptible 62 56.4 22 25.9 REF

 Resistant 48 43.6 63 74.1 3.7 2 6.8 3.02E−05
Pyrazinamide

 Susceptible 70 63.6 41 48.2 REF

 Resistant 40 36.4 44 51.8 1.8 1.1 3.3 0.03
Prothionamide

 Susceptible 87 79.1 69 81.2 REF

 Resistant 23 20.9 16 18.8 0.9 0.4 1.8 0.72
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proportions of strains in clusters. For the cgMLST 
analysis, 8 strains were excluded with ≥ 10% bad quality 
alleles (Additional file  2: Table S1). Retrospective con-
tact tracing confirmed that 21/85 (24.7%) patients with 
strains in SNP-based clusters had an epidemiological 
link, mainly between household contacts (Additional 
file  3: Table  S2). Confirmed transmission events often 
involved MTBC strains with identical pncA mutations 
that confer pyrazinamide resistance (Fig. 3, Additional 
file  3: Table  S2). Notably, some SNP-based clusters 
and cgMLST clonal complexes were further differen-
tiated by distinct pncA mutations suggesting recent 
acquisition of pyrazinamide resistance and continued 

transmission of pyrazinamide resistant strains (Fig.  3, 
Additional file 3: Table S2).

Factors associated with recent transmission of MDR‑MTBC 
strains
We employed logistic regression models to identify 
bacterial genetic and patient demographic factors 
associated with recent transmission, using molecular 
clusters (SNP-based) as a surrogate. In the univariate 
logistic regression analysis we did not find associa-
tions of MTBC lineage, age, gender, or HIV status with 
recent transmission (Table  1). However, RR/MDR 
strains with a putative compensatory mutation in genes 
coding for RNA-polymerase subunits rpoA, and rpoC 
were associated with recent transmission (OR 2.1, 
95% CI 1.1–3.8, P = 0.02). Furthermore, an increasing 
number of pre-existing resistances against drugs used 
in the short MDR-TB regimen was associated with an 
increased odds of patients being recently infected (OR 
1.7 per unit increase, i.e. for any additional drug resist-
ance, 95% CI 1.3–2.3, P < 0.001). Strains that were con-
sidered resistant against high-dose isoniazid (OR 8.8, 
95% CI 3.3–23.5, P < 0.001), ethambutol (OR 3.7, 95% 
CI 2.0–6.8, P < 0.001), or pyrazinamide (OR 1.8, 95% CI 
1.1–3.3, P = 0.03) were associated with recent transmis-
sion (Table 1).

Next, we considered all predictors with P ≤ 0.1 in a 
multiple logistic regression model and performed a step-
wise backwards exclusion of factors aiming for the best 
supported model, i.e. lowest AIC value. The predictor 
“number of genotypic drug resistances” showed high col-
linearity (variance inflation factor 43) and was not con-
sidered in the multiple logistic regression model. The best 
supported model included to against high-dose isoniazid 
(aOR 7.4, 95% CI 2.6–2.4, P < 0.001), resistance to eth-
ambutol (aOR 2.4, 95% CI 1.2–4.8, P = 0.014), and an age 
between 30 and 50 (aOR 3.8, 95% CI 1.3–11.4, P = 0.016) 
as relevant predictors for recent transmission of MDR-
MTBC strains. Resistance to pyrazinamide, HIV status, 
and the presence of a putative compensatory mutation 
were not found to be strong predictors for recent trans-
mission in the multiple logistic regression analysis. This 
was confirmed in a forward selection approach.

Discussion
Our genomic epidemiological study of RR/MDR 
MTBC strains in Cameroon showed that, besides age of 
30–50  years, genotypic resistance to high-dose isonia-
zid, and ethambutol is a strong predictor for molecular 
clusters, which is a surrogate for recent transmission. 
This may be at least partially due to current TB diagnos-
tics and TB patient management in the country. Drug 
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susceptibility tests are prioritized for patients with a 
high risk of RR/MDR-TB, including patients with a his-
tory of TB treatment, prisoners, and known contacts of 
people with MDR-TB. As a result of this prioritization, 
RR/MDR-TB patients without these risk factors often 
start on a first-line drug regimen comprising isoniazid, 
rifampicin, ethambutol, and pyrazinamide. In 2019 for 
instance, only an estimated 24% of patients with bacteri-
ologically-confirmed TB in Cameroon had a test for RR/
MDR-TB, as compared to the global average of 61% [1]. 
In fact, undiagnosed RR/MDR-TB has been associated 
with transmission, as well as selection of additional drug 
resistances [24], and likely contributes to the association 
between first-line drug resistances, such as isoniazid and 
ethambutol, and transmission in our study. Thus, access 
to universal drug susceptibility testing for all TB patients, 
as recommended by the WHO [1], is urgently needed 
in Cameroon to maintain the effectivity of the current 
MDR-TB treatment regimen, and to curb the evolution of 
drug resistance.

Although drug resistance proportions remained stable 
over the relatively short 3.5 year study period, it remains 
to be determined if pre-existing drug resistances may 
impact on outcomes of the standardized short MDR-TB 
regimen in the next years. The very low prevalence of 
fluoroquinolone, kanamycin and clofazimine resistance 
likely explains the generally favourable treatment out-
comes [16]. However, containing and reducing the risk of 
RR/MDR-MTBC transmission in general will be crucial 
to preserve the overall effectiveness of the short MDR-TB 
regimen and to prevent selection of drug resistances in 
the region.

There is mounting evidence that globally increasing 
MDR-TB rates are largely attributable to recent trans-
mission of RR/MDR-MTBC strains, rather than to 
acquired resistance while on TB treatment [13–15, 25]. 
Our results suggest that pre-existing drug resistance is 
an important factor that is associated with recent trans-
mission of RR/MDR MTBC strains in Cameroon, and 
it should be considered with other factors such as diag-
nostic delays in many other world settings as it renders 
initial TB treatment regimens less effective [24, 26]. 
Patients, especially those with undiagnosed RR/MDR-
TB and infected with MTBC strains with additional 
resistances against ethambutol and pyrazinamide, are 
more prone to fail initial first-line TB therapies [27]. 

Likewise, suboptimal therapies and delayed diagnosis 
increase the time of infectiousness and the likelihood of 
transmission [27–30].

In addition, bacterial genetic factors such as compen-
satory evolution, which counteracts the fitness costs 
of drug-resistance mediating mutations, has also been 
shown to drive the transmission of MDR-MTBC strains 
in some settings [14, 24, 31, 32]. In a univariate analysis 
we found an association of putative compensatory muta-
tions with recent transmission (i.e. molecular clusters), 
however, including the presence of such mutations did 
not improve the predictability of recent transmission in 
the multiple logistic regression analysis.

The observed overall favourable treatment outcomes in 
our study are in line with a recent phase 3 non-inferiority 
trial in Bangladesh in patients infected with rifampicin 
resistant strains but susceptible to fluoroquinolones and 
aminoglycosides [11].

On the other hand, the short MDR-TB regimen also 
generated concerns about its efficacy in settings with 
high resistance rates to ethambutol and pyrazinamide, 
e.g. Eastern Europe, but also Sub-Saharan Africa, expos-
ing patients to drugs with a high likelihood of pre-exist-
ing resistance [6–9, 33]. Thus, decision makers in many 
settings are confronted with the dilemma that the short 
MDR-TB regimen is at least non-inferior to a long-term 
conventional individualized therapy with high cure rates, 
but it may increase the risk of drug resistance evolution 
over time. In fact, using drugs despite proven resistance 
is highly associated with poor treatment outcomes for 
conventional MDR-TB regimens [24]. Critically, the loss 
of fluoroquinolones as an effective second-line TB drug 
would jeopardize the efficacy of both short and conven-
tional MDR-TB therapies [34–36].

Our genomic epidemiological study has particular limi-
tations. The large number of patients lost to follow-up 
prevented the analysis of factors associated with treat-
ment outcomes. As mentioned before, previously treated 
patients are prioritized for drug susceptibility testing, 
and thus are overrepresented in our patient cohort (84% 
of those studied here had a history of TB treatment). 
The proportions of pre-existing drug resistances and 
their implication on the transmission of MTBC strains 
may not be representative for undiagnosed RR/MDR-
TB patients in Cameroon. Furthermore, transmission 
events that occurred before the study and transmission 

(See figure on next page.)
Fig. 3  Transmission networks among multidrug resistant (MDR) tuberculosis patients in Cameroon. Seven largest molecular clusters of rifampicin 
resistant and MDR Mycobacterium tuberculosis complex strains in Bamenda, Cameroon. Numbers on connecting lines indicate alelle differences; 
pink branches connect strains with a maximum distance of five alleles. Boxes indicate strains with identical pncA mutations, and identical node 
colors represent patients with confirmed epidemiological links
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Fig. 3  (See legend on previous page.)
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events during the study including patients that were diag-
nosed after the study period could not be captured with 
our analysis. Lastly, the impact of socioeconomic factors 
on the transmission of MTBC strains could only be par-
tially investigated through retrospective tracing of epide-
miological links in molecular clusters, and other relevant 
factors such as time to diagnosis and detailed treatment 
histories were not available for inclusion in the analysis.

Conclusions
We show that resistance to high-dose isoniazid, and 
ethambutol is associated with recent transmission of 
MDR-MTBC in Cameroon. Our findings highlight the 
importance of universal drug susceptibility testing for the 
early identification of patients who need RR/MDR-TB 
treatment. The rapid initiation of appropriate treatment 
regimens will be crucial for both improving treatment 
outcomes and minimizing transmission of MDR-TB 
strains as a basis for future MDR-TB control.
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