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Abstract 

Background and aims:  Acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) is one of the most com-
mon acute thoracopathy with complicated pathogenesis in ICU. The study is to explore the differentially expressed 
genes (DEGs) in the lung tissue and underlying altering mechanisms in ARDS.

Methods:  Gene expression profiles of GSE2411 and GSE130936 were available from GEO database, both of them 
included in GPL339. Then, an integrated analysis of these genes was performed, including gene ontology (GO) and 
KEGG pathway enrichment analysis in DAVID database, protein–protein interaction (PPI) network construction evalu-
ated by the online database STRING, Transcription Factors (TFs) forecasting based on the Cytoscape plugin iRegulon, 
and their expression in varied organs in The Human Protein Atlas.

Results:  A total of 39 differential expressed genes were screened from the two datasets, including 39 up-regulated 
genes and 0 down-regulated genes. The up-regulated genes were mainly enriched in the biological process, such as 
immune system process, innate immune response, inflammatory response, and also involved in some signal path-
ways, including cytokine–cytokine receptor interaction, Salmonella infection, Legionellosis, Chemokine, and Toll-like 
receptor signal pathway with an integrated analysis. GBP2, IFIT2 and IFIT3 were identified as hub genes in the lung 
by PPI network analysis with MCODE plug-in, as well as GO and KEGG re-enrichment. All of the three hub genes were 
regulated by the predictive common TFs, including STAT1, E2F1, IRF1, IRF2, and IRF9.

Conclusions:  This study implied that hub gene GBP2, IFIT2 and IFIT3, which might be regulated by STAT1, E2F1, 
IRF1, IRF2, or IRF9, played significant roles in ARDS. They could be potential diagnostic or therapeutic targets for ARDS 
patients.
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Introduction
Acute respiratory distress syndrome (ARDS) or acute 
lung injury (ALI) is an acute hypoxemic respiratory fail-
ure, characterized by lung tissue oedema and injury, 
inflammatory responses, and compromised gas exchange 
following macrophage activation, surfactant dysfunction, 

and epithelial destruction [1, 2]. It has been widely recog-
nized as a clinical problem worldwide, accompanied by 
high morbidity and mortality [3, 4]. According to a recent 
international multi-centre research in 50 countries, the 
prevalence of ARDS was 10.4% of ICU admissions [5]. 
According to a cross-sectional study, the mortality of 
ARDS from 2012 to 2013 in Chinese 20 ICUs is about 
34% [6]. Especially in the last 2 years, the incidence and 
mortality of COVID-19-associated ARDS have worsened 
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the outcome. For the patients of COVID-19 ARDS in 
ICU, mortality ranged between 26 and 61.5%, especially 
for those who received mechanical ventilation, the mor-
tality ranged between 65.7 and 94% [7]. Despite a variety 
of basic and clinical research held, there is still no effec-
tive pharmacotherapy for it. Currently, the treatment 
remains primarily with ventilation and conservative fluid 
management. Therefore, it is critical to study ARDS’s 
pathogenesis and explore specific biomarkers for this 
condition.

The development process of ARDS is complicated, 
and the specific mechanism is not yet fully understood. 
Multiple studies have confirmed that ARDS is related to 
the damage and disruption of the epithelial and endothe-
lial cells, as well as dysregulated inflammation [8–10]. 
A breakdown in endothelial junctions or the injury of 
endothelial cells can aggravate lung vascular permeabil-
ity. Cheng et al. [11] reported that the severe endothelial 
pyroptosis caused by bacterial endotoxin lipopolysaccha-
ride (LPS) was mediated by the inflammatory caspases. 
IL-1β could impair CREB-mediated VE-cadherin tran-
scription to induce endothelial injury [12]. Besides, lung 
epithelial permeability alteration is also an important 
factor in ARDS pathogenesis. Short et  al. [13] showed 
that the alveolar barrier could be damaged by influenza 
by disrupting epithelial cell tight junctions, specifically 
with loss of tight junction protein claudin-4. Related 
gene mutations or expression alterations in the ARDS 
might be suitable to serve as diagnostic or therapeu-
tic targets. Microarrays have been used to quantify the 
high-throughput expression of genes for many species 
quickly [14]. As a result, the data produced from micro-
arrays were stored in some public databases. We could 
explore lots of valuable clues from these raw data for fur-
ther experimental research. Some different bioinformatic 
studies have been exploited in the past few years, which 
provided us with abundant integrated bioinformatical 
methods for studies [15].

To identify the better potential diagnosis or therapeutic 
targets for ARDS, firstly, we performed a transcriptome 
analysis of mice lung tissues. The tissues were treated 
with LPS and the raw data was acquired from Gene 
Expression Omnibus (GEO) to explore differentially 
expressed genes (DEGs) and pathways. Once character-
ized hub genes, we could evaluate their expression in 
human lung tissues. Finally, the hub DEGs above men-
tioned were processed further to find the common TFs.

Methods
Approach
In this study, GSE2411 [16] and GSE130936 [17] profiles 
were chosen from Gene Expression Omnibus (GEO). 
Titles associated with ARDS or ALI were screened, and 

the details of these datasets, like organisms and samples, 
were further evaluated. In the next, the GEO2R online 
tool and Venn diagram software were applied to find the 
common differentially expressed genes (DEGs) in the two 
datasets. Then, we used the DAVID database to analyze 
these DEGs including molecular function (MF), cellu-
lar component (CC), biological process (BP), and Kyoto 
Encyclopedia of Gene and Genome (KEGG) pathways. 
Next, the protein–protein interaction (PPI) network 
with MCODE plugin was constructed. GO analysis and 
KEGG analysis were re-utilized to screen the hub genes, 
followed by the hub DEGs imported into the Human Pro-
tein Atlas database to evaluate their expression level in 
varied organs. At last but not least, the hub DEGs were 
processed by iRegulon to find the common TFs.

Microarray data information
The relevant gene profiles were obtained from NCBI-
GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/), a pub-
lic online database. Titles associated with ARDS were 
screened, and the details of these datasets were further 
evaluated. Two datasets were obtained at last, includ-
ing GSE2411 and GSE130936. Microarray data of 
GSE2411 and GSE130936 were on account of GPL339 
Platforms ([MOE430A] Affymetrix Mouse Expression 
430A Array). Dataset GSE2411 included 6 wildtype mice 
control, and 6 wildtype mice injected intraperitoneally 
with LPS to induce experimental ARDS. Samples were 
obtained from the pulmonary tissues. They were marked 
from GSM45427 to GSM45432 and from GSM45439 to 
GSM45444, respectively. Dataset GSE130936 included 
wild-type mice that were induced either with saline as 
control (n = 4) or LPS (n = 3). Samples were labelled 
from GSM3756516 to GSM3756518 and GSM3756522 to 
GSM3756525 for further processing (Additional file 1).

Data processing and DEGs identification
DEGs between ARDS pulmonary tissues and nor-
mal pulmonary tissues were identified by online tool 
GEO2R (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/), with 
|logFC|> 2 and adjust P value < 0.05[18]. Then, the raw 
data were input in Venn software online (http://​bioin​
forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/) to find the com-
mon DEGs between the two datasets [19]. At last, the 
genes in the common datasets with logFC > 0 were con-
sidered up-regulated genes, while those with logFC < 0 
were considered down-regulated genes.

Gene function and pathway enrichment analysis of DEGs
Gene ontology (GO) is a systematical approach for gene 
annotation, RNA and protein expression [20]. KEGG is 
an online database of genomes, enzymatic pathways, and 
biochemicals. The pathway database of KEGG records 
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molecular interaction networks in cells and changes spe-
cific to specific organisms [21]. DAVID (https://​david.​
ncifc​rf.​gov/) is a biological information database that 
integrates biological data and analysis tools to provide 
systematic comprehensive biological function annotation 
information for the large-scale gene or protein lists, help-
ing us to extract from them biological information [22]. 
In this study, the DAVID database was used to perform 
GO analysis and KEGG pathway enrichment analysis in 
helping classifying DEGs (P-value < 0.05).

PPI network construction of DEGs and significant module 
screening
Visualized protein–protein interaction (PPI) information 
of DEGs was evaluated by STRNG (https://​string-​db.​
org/) [23], an online database set for retrieving interact-
ing genes. Subsequently, the result from STRING was 
imported into Cytoscape software to examine the poten-
tial correlation among these DEGs (maximum number 
of interactors = 0 and confidence shub ≥ 0.4) [24]. Lastly, 
MCODE plugin of Cytoscape was utilized to screen the 
obvious submodules and hub genes in the PPI network 
(degree cutoff = 2, k-hub = 2, node shub cutoff = 0.2 and 
the normalized enrichment shub (NES) > 12 [25]).

Fig. 1  a, b Red meant up-regulated genes and blue mean downregulated genes, in GSE2411 and GSE130936 respectively. Authentication of 
39 common DEGs in the two datasets (GSE2411 and GSE130936) through Venn diagrams software (available online: http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​Venn/). Different color meant different datasets. c 39 DEGs were up-regulated in the two datasets (logFC > 0). d 0 DEGs were 
down-regulated in two datasets (logFC < 0)

https://david.ncifcrf.gov/
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Expression of hub genes in different human normal organs
The Human Protein Atlas (https://​www.​prote​inatl​as.​
org/) was a public database of the gene expression pro-
file in human varied organs. The basic RNA and protein 
expression levels of specific genes could be identified 
from it. There were three RNA expression databases in 
the Human Protein Atlas, including the HPA dataset, the 
genotype-tissue expression (GTEx) project dataset and 
the Functional Annotation of the Mammalian Genome 
(FANTOM5) dataset. In this study, GTEx database was 
used to evaluate the hub genes’ mRNA expression level 
in different organs, particularly in the pulmonary tissue.

Prediction of transcriptional factors (TFs) of hub genes
The Cytoscape plugin iRegulon was used to analyze 
transcription factors regulating the hub genes [25, 
26]. The iRegulon plugin can identify regulons using 
motifs and track discovery in an existing network or 
a set of regulated genes. The cutoff criteria were as fol-
lows: enrichment shub threshold = 3.0, ROC thresh-
old for AUC calculation = 0.03, rank threshold = 5000, 
minimum identity between orthologous genes = 0.0 and 
FDR = 0.001 [25].

Fig. 2  GO and KEGG enrichment analysis of DEGs. a Shows the results of biological process terms enriched by BP analysis. b Shows the enriched 
pathway by KEGG analysis. c Shows the results of biological process terms enriched by CC analysis. d Shows the results of biological process terms 
enriched by MF analysis. The coloured dots represent the P-value for that term, with red representing greater significance. The size of the dots 
represents the number of involved genes. The rich factor represents the proportion of enriched genes for each term

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Results
Identification of DEGs in ARDS
Raw data of the microarray datasets from GEO datasets 
were processed by the CEO2R online tool. We extracted 
224 and 56 DEGs from GSE130936 (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​geo2r/?​acc=​GSE13​0936) and GSE2411 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/?​acc=​GSE24​
11), respectively. Then, the common DEGs in the two 
datasets were identified by Venn diagram software. 39 
common DEGs were obtained, including 39 up-regu-
lated genes (log FC > 2, adjust P < 0.05) and 0 down-reg-
ulated genes (log FC < − 2, adjust P < 0.05) in the pancreas 
(Fig. 1).

DEGs gene ontology and KEGG pathway analysis in ARDS
All 39 DEGs were further analyzed by DAVID software. 
The results of gene ontology analysis showed that (1) For 
biological process (BP), DEGs were particularly enriched 
in regulation of immune system process, innate immune 
response, inflammatory response, cellular response to 
interferon-beta and so on. (2) For cell component (CC), 
DEGs were mainly enriched in the extracellular space, 
the extracellular region, the symbiont-containing vacuole 

membrane, and the high-density lipoprotein particle. (3) 
For molecular function (MF), DEGs were enriched in the 
response to the cytokine activity, the chemokine activity, 
the CXCR chemokine receptor binding, the chemoat-
tractant activity, the Toll-like receptor 4 binding and the 
interleukin-1 receptor binding (Fig. 2a, c, d). The analysis 
results of KEGG appeared that DEGs were enriched in 
multiple pathways (Fig. 2b), including cytokine–cytokine 
receptor interaction, Salmonella infection, Legionellosis, 
Chemokine signalling pathway, Toll-like receptor signal-
ling pathway and so on (P < 0.05).

Protein–protein interaction network (PPI) and modular 
analysis
A total of 33 DEGs were imported into the DEGs PPI 
network complex which included 17 nodes and 77 edges, 
including 72 up-regulated and 0 down-regulated genes 
(Fig.  3). There were 16 genes excluded from the EDGs 
PPI network. Then Cytotype MCODE was applied for 
further analysis. It reviewed that 17 hub genes, includ-
ing Cd14, Irg1, Iigp1, Gbp6, Ifit1, Ifit2, Saa3, Il1rn, Il1b, 
Ccl3, Cxcl10, Clec4e, Cxcl1, Cxcl2, Ifit3, Gbp2 and Rsad2, 
all of which were identified from the 33 nodes. Based on 

DEGs Gene Names

Up-regulated Cd14 Irg1 Iigp1 Gbp6 Ifit1 Ifit2 Saa3
Il1rn Il1b Ccl3 Cxcl10 Clec4e Cxcl1
Cxcl2 Ifit3 Gbp2 Rsad2

Down-regulated /
Fig. 3  Common DEGs PPI network constructed by STRING online database and Module analysis. There was a total of 33 DEGs in the DEGs PPI 
network complex. The nodes meant proteins; the edges meant the interaction of proteins; blue circles meant down-regulated DEGs and red circles 
meant up-regulated DEGs. Module analysis via Cytoscape software (degree cutoff = 2, node score cutoff = 0.2, k-core = 2, and max.)

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE130936
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE130936
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE2411
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE2411
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the PPI network analysis, GO term and KEGG pathway 
enrichment analysis was performed again. The result 
from GO enrichment analysis showed that hub genes 
were mostly enriched in the biological process (BP), 
including cellular response to interferon-beta and so on, 
in cell components (CC), including symbiont-containing 
vacuole membrane, extracellular space an extracellular 
region, and also enriched in the molecular function (MF), 
including cytokine activity and so on. KEGG pathway 
was mainly enriched in Salmonella infection signalling 
pathway and so on (Fig.  4). According to the biological 

process analysis, GBP6, GBP2, IFIT1, IFIT3 and IIGP1 
were related to the cellular response to interferon-beta.

The basic expression of hub genes in the lung and human 
other organs
The Human Protein Atlas database was used to evalu-
ate the expression level of cor- genes, including GBP6, 
GBP2, IFIT1, IFIT3 and IIGP1 in varied human organs. 
IIGP1 was mus musculus specific and not expressed in 
human. From Fig.  5a–d, GBP6, GBP2, IFIT1 and IFIT3 
were expressed in multiple human organs with different 
expression levels in different tissues. But GBP6 were not 

Fig. 4  GO and KEGG enrichment re-analysis of DEGs. a Shows the results of biological process terms enriched by BP analysis. b Shows the enriched 
pathway by KEGG analysis. c Shows the results of biological process terms enriched by CC analysis. d Shows the results of biological process terms 
enriched by MF analysis. The coloured dots represent the P-value for that term, with red representing greater significance. The size of the dots 
represents the number of involved genes. The rich factor represents the proportion of enriched genes for each term
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detected in the human pulmonary tissue. It suggested 
that GBP2, IFIT1 and IFIT3 might be potential targets for 
ARDS diagnosis and treatment (Fig. 5).

Transcription factor analysis of hub genes
The common transcription factor analysis of the 3 
hub genes was conducted using iRegulon, a Cytoscape 

Gene Names Organs

IIGP1 /

GBP2 Cerebellum;Parathyroid gland;Lung;Stomach;Duodenum;Small intestine;Gallbladder; 

Pancreas;Prostate;Ovary;Endometrium; Cervix, uterine;Placenta;Heart muscle;Skin; Lymph 

node;Tonsil

GBP6 Caudate;Adrenal gland;Oral mucosa;Esophagus;Kidney;Testis;Cervix, uterine;Tonsil

IFIT1 Adrenal gland;Lung;Duodenum;Small intestine;Liver;Gallbladder;Pancreas;Kidney;Kidney;

Testis;Seminal vesicle;Heart muscle;Smooth muscle;Skeletal muscle;Soft tissue

IFIT3 Kidney;Epididymis;Seminal vesicle;Skin;Cerebral cortex;Caudate;Thyroid gland;Parathyroid 

gland;Adrenal gland;Bronchus;Lung;Stomach;Duodenum;Small 

intestine;Colon;Rectum;Liver;Gallbladder
Fig. 5  Basic expression of hub genes in the lung and other human organs via The Human Protein Atlas database. Protein expression level in 
different human organs, especially in the lung was evaluated with genotype-tissue expression (GTEx) project dataset from The Human Protein Atlas 
database
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plugin, and a normalized enrichment shub (NES) > 12 
was considered to be significant. The transcriptional 
regulation network of these hub genes was shown 
in Fig.  6. The transcription factors with NES > 12 
were STAT1 (NES = 24.252), E2F1 (NES = 21.465), 
IRF2 (NES = 19.614), IRF1 (NES = 12.027) and IRF9 
(NES = 12.007).

Discussion
In the present study, a total of 39 genes related to ARDS 
were identified. GBP2, IFIT1 and IFIT3 were identified as 
common hub genes. They were mainly involved in Sal-
monella infection, cytokine–cytokine receptor interac-
tion, TNF signalling pathway, Toll-like receptor signalling 
pathway and so on and were confirmed expressed in var-
ied organs, including the lung tissue. STAT1, E2F1, IRF1, 
IRF2, and IRF9 were identified as the main TFs and were 
predicted to regulate these hub genes in ARDS.

IFIT1 and IFIT3 belong to the interferon-induced 
protein with the tetratricopeptide repeats (IFIT) pro-
tein family. They are involved in regulating immune 
responses and restrict viral infections through a variety 
of mechanisms, including the restriction of viral RNA 
translation [27]. Recent studies showed that IFIT3 could 
modulate IFIT1 RNA Binding specificity and protein sta-
bility [28, 29]. Xu et al. reported that IFIT3 transcription 
was dependent on NF-κB activation [30], while NF-κB 
played a vital role in ARDS [31, 32]. Exome-wide analy-
sis showed that IFIT3 mutation was associated with 
COPD and airflow limitation [33]. All of them suggested 
that IFIT1 and IFIT3 mutation might be involved in the 
occurrence of ARDS and supported our hypothesis.

According to our findings, STAT1, E2F1, IRF1, IRF2, 
and IRF9 were screened as TFs according to iRegulon, 
which is the plugin of Cytoscape. STAT1 is a member 
of the STAT family of 7 cytoplasmic proteins. It had 
essential effects on innate immunity via defending the 
host from different infections [34]. Sevoflurane could 
reduce LPS-induced ARDS via modulating STAT1 [35]. 

In hepatocellular carcinoma, IFIT3 could bind signal 
transducer and activator of transcription 1 (STAT1) and 
STAT2 to enhance STAT1–STAT2 heterodimerization 
and nuclear translocation upon IFN-α treatment, thus 
promoting IFN-α effector signalling [36]. It suggested 
that the interaction between STAT1 and IFIT3 might 
play a significant role in ARDS progression. IRF1, IRF2, 
and IRF9 belong to the interferon regulatory factor (IRF) 
family. IRF-1 deficiency played a key role in the classical 
ROS-dependent release of NETs, which might serve as a 
novel target in ARDS [37]. In the recent COVID-19 stud-
ies, NETs contributed to COVID-19 related ARDS [38, 
39] by contributing to excessive thrombosis. It suggested 
that IRF-1 might play a role in COVID-19 related ARDS. 
Wang et  al. reported that LncRNA XIST could aggra-
vate LPS-induced ARDS in mice by upregulating IRF2 
[40]. The above reports were entirely consistent with our 
findings.

Despite our findings supported by some studies, we 
did not conduct further animal experiments and clinical 
data analysis to verify it. It gave us a hint for further study 
direction. Next, we will implement some animal experi-
ments to develop more sensitive biomarkers and drugs, 
followed by some related clinical trials.

In summary, our bioinformatics analysis study identi-
fied three DEGs (GBP2, IFIT1 and IFIT3) in ARDS pul-
monary tissues according to two different microarray 
datasets (GSE2411 and GSE130936). Results suggested 
that these three genes could be targets for the study of 
ARDS, and might be regulated by TFs, STAT1, E2F1, 
IRF1, IRF2, or IRF9. Anyway, these predictions would be 
verified by a series of experiments in the future. These 
studies have opened up new research directions for the 
diagnosis and treatment of ARDS.

Conclusions
In this review, we used a bioinformatics approach to 
help explore genes, pathways and related TFs that might 
be involved in the occurrence of ARDS. We speculated 
GBP2, IFIT1 and IFIT3 might play important roles. The 
findings might provide novel insights into the develop-
ment of promising targets for the diagnosis and treat-
ment of ARDS in the future.
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Additional file 1. Supplementary Fig. 1. DEGs gene ontology and KEGG 
pathway analysis by Enrichr software.

Fig. 6  Common TFs among GBP2, IFIT2 and IFIT3 were screened by 
the iRegulon plugin of Cytoscape software. STAT1, E2F1, IRF1, IRF2, or 
IRF9 could modulate the three genes at the same time
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