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Abstract 

Background:  A proactive approach to preventing and responding to emerging infectious diseases is critical to 
global health security. We present a three-stage approach to modeling the spatial distribution of outbreak vulnerabil-
ity to Aedes aegypti-vectored diseases in Perú.

Methods:  Extending a framework developed for modeling hemorrhagic fever vulnerability in Africa, we modeled 
outbreak vulnerability in three stages: index case potential (stage 1), outbreak receptivity (stage 2), and epidemic 
potential (stage 3), stratifying scores on season and El Niño events. Subsequently, we evaluated the validity of these 
scores using dengue surveillance data and spatial models.

Results:  We found high validity for stage 1 and 2 scores, but not stage 3 scores. Vulnerability was highest in Selva Baja 
and Costa, and in summer and during El Niño events, with index case potential (stage 1) being high in both regions 
but outbreak receptivity (stage 2) being generally high in Selva Baja only.

Conclusions:  Stage 1 and 2 scores are well-suited to predicting outbreaks of Ae. aegypti-vectored diseases in this set-
ting, however stage 3 scores appear better suited to diseases with direct human-to-human transmission. To prevent 
outbreaks, measures to detect index cases should be targeted to both Selva Baja and Costa, while Selva Baja should 
be prioritized for healthcare system strengthening. Successful extension of this framework from hemorrhagic fevers 
in Africa to an arbovirus in Latin America indicates its broad utility for outbreak and pandemic preparedness and 
response activities.
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Background
As made clear by the COVID-19 pandemic—as well 
as the Zika virus and Ebola virus epidemics of the mid 
2010s, and the MERS and SARS coronavirus outbreaks 
that preceded them—emerging infectious diseases 

threaten global economies, population health, and 
global health security. A proactive approach to such 
diseases, in particular tools to facilitates health-system 
strengthening while optimizing limited resources, is 
needed to close gaps in pandemic preparedness. To this 
end, a collaboration between the University of Wash-
ington’s MetaCenter for Pandemic Preparedness and 
Global Health Security and the Universidad Peruana 
Cayetano Heredia has developed a suite of mapping 
tools to characterize, in Perú, district-level vulnerabil-
ity to outbreaks of Aedes spp.-transmitted viruses. We 
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have used surveillance data for dengue, the most fre-
quently reported cause of acute febrile illness in Latin 
America [1], to demonstrate the validity of these tools.

Transmitted by Ae. aegypti, dengue is caused by 
four closely related dengue virus serotypes: DENV-1, 
DENV-2, DENV-3, DENV-4. While a continental effort 
to eradicate Ae. aegypti in the mid-20th century suc-
ceeded in Perú [2], re-infestation in 1984 was followed 
by re-emergence of dengue in 1990 [3]. Numerous 
major dengue epidemics have occurred since, and Perú 
is now considered one of the 30 most highly endemic 
dengue infection countries in the world, with an aver-
age of almost 10,000 cases reported to WHO between 
2004 and 2010 and over 56,000 cases reported in 2020 
[4–6].

El Niño Southern Oscillation (ENSO) is a periodic 
phenomenon which drives variability in rainfall pat-
terns and temperature, and increases the likelihood 
of extreme weather events [7]. In 2017, following an 
ENSO event, Perú experienced its largest dengue epi-
demic to date: between February and July over 65,000 
cases were reported, representing a three-fold increase 
over the same period in 2016. Nearly 90% of these cases 
reported from four coastal departments particularly 
affected by the event [8, 9].

This study builds on a framework previously applied 
to hemorrhagic fevers in Africa, which stratifies vul-
nerability on three key transition points in a potential 
epidemic. Stage 1 reflects potential for occurrence of 
an index case, modeled using weather and population 
distribution data. Stage 2 captures potential for a local-
ized outbreak, modeled using measures of healthcare 
system strength and access. Stage 3 reflects potential 
for a widespread epidemic, modeled using distance to 
population centers, regional and national borders, and 
airports [10]. While prior authors have leveraged vec-
tor habitat suitability data and epidemiologic data to 
estimate sub-national spatiotemporal risk for Zika virus 
transmission [11, 12], climate indicators to model den-
gue risk [13], and meteorological variables to simulate 
dengue outbreaks in a dynamic modelling framework 
[14], other drivers of dengue outbreaks are less com-
monly utilized for risk prediction. Furthermore, this 
study is the first attempt to disaggregate risk by stage, 
with implications for intervention design.

Stratifying on season and El Niño, and using surveil-
lance data and a spatially-explicit approach, we sought 
to identify: (1) which districts in Perú are most vulner-
able to dengue outbreaks, (2) the extent to which each 
stage of vulnerability leads to dengue outbreaks, and 
(3) the predictive ability of each vulnerability stage for 
dengue outbreaks.

Methods
The STROBE checklist was used to guide drafting of this 
manuscript [15].

Setting
The study area includes all 1851 districts in Perú. Data on 
dengue cases (outcome) were provided by Perú’s national 
dengue surveillance system, coordinated by the Minis-
terio de Salud. These data were collected from January 
2016 to September 2018. The study population includes 
all individuals under surveillance for dengue in Perú.

As some districts were formed during the study period, 
and novel districts would not be contributing to report-
ing prior to their inception, for inference and prediction 
we merged newly-formed districts with their parent dis-
tricts to eliminate missingness in the outcome variable, 
generating a total of 1838 districts for analysis (Figs.  1 
and  2). In doing this we took the mean of the vulnera-
bility scores calculated for each parent district (detailed 
below) as the merged district’s score, separately for each 
of the three stages.

Vulnerability mapping
Stage 1 To determine risk of an index case of dengue, we 
used a weather-based model of vector incubation and 
survival adjusted for human population. Vector incuba-
tion and survival was calculated using temperature data .

We obtained surface air temperature data using NASA’s 
Global Land Data Assimilation System (GLDAS) [16]. 
GLDAS uses both observed and modeled meteorologi-
cal data to force land surface models. We used data from 
the Noah-LSM version 2.1 with a spatial resolution of 
0.25◦ × 0.25◦ and a temporal resolution of 1 month. From 
these data we calculated the mean temperature for sum-
mer (November–April) and winter (May-October) across 
the study period. Additionally, we calculated the average 
temperatures for each season during El Niño vs non-El 
Niño years. This was done by first calculating the average 
MEI (Multivariate ENSO index) for each season (winter 
vs summer as described above) and year from 1950–
2017, then selecting the upper quantile years within the 
study period as El Niño years and the remaining years 
during the study period as non-El Niño years. We then 
calculated the average temperature for both the El Niño 
years and non-El Niño years by season.

The temperature data were then used to calculate the 
probability of an Ae. aegypti mosquito surviving the 
extrinsic incubation period (EIP). The EIP is the period 
between when a mosquito takes an infectious blood 
meal and when it can transmit the virus through a sub-
sequent feeding. We assumed a lower limit for transmis-
sion of 0 ◦ C and a constant adult daily mosquito mortality 
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probability of 0.86 [17, 18]. The equation for the length 
of the EIP as a function of temperature was derived from 
data collected by Tjaden et al. (2013) [19]:

where EIP is the extrinsic incubation period and T is 
temperature. Using this equation and the estimated daily 

EIP(T ) = 1.0033e
−0.077T

survival probability, we estimated the probability that 
an Ae. aegypti mosquito will survive the EIP at a given 
temperature:

where SEIP(T) is the probability of survival past the EIP 
and T is temperature.

SEIP(T ) = 0.86
EIP(T )

Fig. 1  Location of Perú within South America
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Fig. 2  Perú. Study districts are outlined in black, and merged districts are shaded in red. The merged districts were created by collapsing districts 
formed during the study period with their “parent” district(s)
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In order to assign a value to each district we took 
the mean of the gridded temperature and SEIP that fell 
within each district. Because this was based on the center 
of the cell, some of the small districts did not contain 
the center of a grid cell. To account for this, we made a 
12.5km buffer around these districts and then took the 
mean of those cells whose center fell within them. This 
produced both a mean temperature and mean SEIP for 
each season (summer and winter) and for each season 
during El Niño and non-El Niño years.

Human population data for 2016 was obtained from 
WorldPop [20]. Population data and vector index were 
combined to produce a relative stage 1 (index case) vul-
nerability score for each district.

Stage 2 To calculate stage 2 vulnerability (outbreak 
receptivity), we combined stage 1 vulnerability scores for 
each district with a proxy score for health system capacity 
to contain an outbreak, derived from vaccine coverage, 
under 5 mortality estimates, and travel time to healthcare 
facilities.

Estimates of DPT vaccine coverage for 2018 were 
obtained from the Ministry of Health of Perú (MINSA) 
[21]. Age-specific proportion unvaccinated was stand-
ardized within each age group, then the arithmetic mean 
taken over these groupings. Under 5 mortality estimates 
for 2017 were obtained from Burstein et  al. [22], and 
travel time to the nearest health facility was estimated 
using a global friction layer from Weiss et al. [23]. Health 
facilities were discretized into three tiers defined by the 
Perúvian government (public facilities, social insurance 
system, and private facilities), and the arithmetic mean 
taken over these tiers [24]. The geometric mean was 
taken over these input values to generate outbreak recep-
tivity scores.

Stage 3 For stage 3 (epidemic potential), we combined 
stage 2 information with calculated travel time to the 
nearest city of 50,000 persons or more, derived from 
Weiss et al [23].

All scores were standardized to a 0–10 scale, separately 
for each climate scenario, using a Box-Cox transforma-
tion to normalize their distribution.

Regression models
Study design This study was an ecological retrospective 
cohort study, conducted at the district level. All districts 
in the study period were included, thus no sample size 
calculations were performed.

Exposure Exposure was stage-specific vulnerability 
score, as detailed above.

Outcome Variables extracted from the dengue surveil-
lance data include district of residence, date of initial 
symptoms, and diagnosis type (probable, confirmed, and 
discarded). We collapsed probable and confirmed cases for 

all analyses, where probable cases were defined by history 
of recent fever in addition to two or more symptoms, and 
confirmed cases additionally had either (1) positive serum 
isolation, (2) four-fold change in IgM or IgG titer, (3) posi-
tive PCR, (4) positive immunoassay, or (5) an epidemiologi-
cal link [21].

To mitigate surveillance fatigue as a driver of misclassi-
fication, we parameterized outcome as dengue outbreaks. 
An outbreak was defined as five or more cases with symp-
tom onset within three or more consecutive weeks, extend-
ing forward and backward in time until at least two weeks 
with no reported cases occurred [25].

We then collapsed in time, estimating the (a) total num-
ber of outbreak weeks, (b) whether one or more outbreaks 
occurred, and (c) median duration of outbreaks in each dis-
trict over the study period.

Confounders As vulnerability is both broadly-defined and 
latent, we could conceive of no variables that could be con-
founders (i.e., causes of dengue outbreaks which are associ-
ated with but not downstream of vulnerability) that would 
not themselves be considered a component of vulnerability. 
Thus, our inferential models included no confounders.

Effect modifiers As connectivity may have differential 
effects on outbreak risk in different eco-regions, in a sen-
sitivity analysis we modeled stage 3 vulnerability with an 
interaction term for natural region (Selva Alta, Sierra, Selva 
Baja, Costa; Fig. 3). Natural region data were downloaded 
from a Universidad de San Martín de Porres database [26].

We also subset the data into summer versus winter, El 
Niño versus non-El Niño, and all combinations thereof, 
as vulnerability scores are specific to binary season and 
El Niño activity as detailed above. We defined summer as 
December to April, winter as May to November, and El 
Niño using monthly El Niño Coastal Index (ICEN) data. 
This index was developed by Perú’s Estudio Nacional del 
Fenómeno El Niño and reflects local ENSO impacts. We 
downloaded these data from the Instituto del Mar del Perú 
website [27]. Months with a sea surface temperature anom-
aly of greater than 0.4◦ C were classified as El Niño.

Statistical analyses We fit all models (inference and pre-
diction) as Bayesian hierarchical spatial smoothing models, 
using the R-INLA package. District-level random effects ei 
included both structured (spatial) and unstructured (non-
spatial) components:

where

(1)ei = Si + ǫi

(2)ǫi|σ
2
ǫ ∼ iidN (0, σ 2

ǫ )

(3)S|σ 2
s ∼ ICAR(σ 2

s )
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•	 ǫi are the unstructured (non-spatial) random effects
•	 S is the vector of structured (spatial) random effects.
•	 and ICAR is the intrinsic conditional autoregressive 

model, in which each district’s random effect is a 
function of its neighbors’

For both random effects we used a “penalized com-
plexity” prior [28, 29] Pr(σ > U) = α , where σ is the 
standard deviation for the structured and unstructured 
random effects, U = 1 , and α = 0.01 . With a log link, this 
specification gives a 99% posterior credible interval of 
(0.31, 2.72), on the multiplicative scale, for each random 
effect’s residual relative risk.

Inference For inference, we fit two families of mod-
els: zero inflated Poisson models with outcome param-
eterized as total outbreak weeks, and logistic regression 
models with outcome parameterized as binary presence 
versus absence of an outbreak week observed over the 
study period.

In a sensitivity analysis, we fit a zero inflated Poisson 
model with outcome parameterized as median outbreak 
duration to the stage 2 vulnerability score, as healthcare 
system strength may have a greater impact on duration of 
an outbreak than presence of an outbreak.

Prediction For prediction, we set outcome to missing 
for a random one-third of districts in our dataset. This 

Fig. 3  Natural regions over merged districts in Perú
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allows these districts to serve as a test set, while ensur-
ing their random effects will still be estimated (required 
for prediction from a spatial model), compared with 
removing these districts from our data entirely. We then 
fit logistic regression models, with binary outcome as 
described above, to the “training” data. We produced 
ROC curves and estimated AUC for each district using 
the ROCR package in R.

Results
Vulnerability mapping
Vulnerability maps for stages 1, 2, and 3 by season are 
presented in Fig. 4. The same maps stratified on El Niño 
and non-El Niño period are presented in additional 

figures [see Additional files 1 and 2], as well as a hyper-
link to an interactive version [see Additional file  3]. 
Across all three stages, vulnerability was lowest in the 
highlands (Selva Alta and Sierra). Stage 1 vulnerabil-
ity (index case potential) was highest in the Selva Baja 
and Costa ecozones, while stage 2 (outbreak receptiv-
ity) was in general highest in Selva Baja, and stage 3 
(epidemic potential) was again highest in the Selva 
Baja ecozone, however with more high-risk districts in 
the northern extent of this ecozone than the southern 
extent.

Descriptive statistics for vulnerability scores are pre-
sented in Table  1; these are parameterized to range 
from 0 to 10.

Fig. 4  Vulnerability scores for summer (November–April) and winter (May–October), mean over the study period
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Regression models
Descriptive statistics A total of 99,789 dengue cases 
were reported during the study period, with a peak of 
cases observed in 2017 (Fig.  5). Out of 1838 districts, 
174 (9.5%) experienced at least one dengue outbreak 
during the study period. The mean number of out-
breaks experienced was 0.79 (range 0, 27), mean num-
ber of outbreak weeks was 3.62 (range 0, 141), and 

mean outbreak duration was 0.68 weeks (range 0, 225) 
(Fig. 6).

Inference Results from inferential models are pre-
sented in Tables 2 (zero-inflated Poisson model) and 3 
(logistic regression model). Point estimates were strong 
for both models, ranging from a 11% higher number 
of outbreak weeks (zero-inflated Poisson model) and 
49% higher odds of an outbreak (logistic model) for a 
district with a one unit higher stage 3 vulnerability 
score in the overall winter and El Niño winter models, 
respectively; to a 28% higher number of outbreak weeks 
(zero-inflated Poisson model) or 456% higher odds of 
an outbreak (logistic model) for a district with a one 
unit higher vulnerability score for the stage 2 overall 
summer and winter (equivalent point estimates) and 
stage 1 summer El Niño models, respectively. There 
were no clear trends in rate ratios across stage, season, 
or El Niño (Table  2), however odds ratios decreased 
with increasing stage (Table 3).

Sensitivity analyses Stage 2 vulnerability (outbreak 
receptivity) was found to be more strongly associ-
ated with median outbreak duration than number of 
outbreak weeks (Table  4). No interaction was found 
between stage 3 vulnerability (epidemic potential) and 
natural region.

Prediction Prediction models results are presented 
in Table  5. Area under the ROC curve (AUC) was in 
general high, being the lowest for stage 3 vulnerability, 
summer El Niño (0.58, 95% CI 0.49, 0.67), highest for 
stage 1 vulnerability, winter, non El Niño (0.93, 95% CI 
0.90, 0.95), and over 0.8 for 11 out of 18 model. ROC 
curves are presented in Additional file 4.

Table 1  Descriptive statistics, vulnerability scores

Vulnerability score by stage and El Niño. Stage 1: index case potential; stage 2: 
outbreak receptivity; stage 3: epidemic potential. W: winter; S: summer; N: no; 
Y: yes

Stage Season El Niño Mean SD

Stage 1 W − 5.12 1.96

S − 5.46 1.73

W N 5.15 1.93

W Y 5.48 1.72

S N 5.20 1.89

S Y 5.50 1.69

Stage 2 W − 4.44 1.49

S − 4.62 1.39

W N 4.46 1.47

W Y 4.63 1.38

S N 4.49 1.45

S Y 4.64 1.38

Stage 3 W − 4.16 1.37

S − 4.26 1.33

W N 4.18 1.36

W Y 4.27 1.32

S N 4.19 1.35

S Y 4.27 1.32

Fig. 5  Time series of dengue cases in all districts of Perú, January 2016−September 2018
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Discussion
We found index case potential to be highest in east-
ern Selva Baja and northern and central Costa, in both 
winter and summer: close to one-quarter of Selva Baja 
and Costa districts had high index case potential (stage 
1 score > 8), versus 7% of Selva Alta districts and 0% 
of Sierra districts. Of these Selva Baja districts, 15% 

also had high outbreak receptivity, while none of the 
Costa districts with high index case potential also had 
high outbreak receptivity, and several districts in Costa 
(Comas, San Borja, and San Juan de Miraflores, all 
located in Lima province) with high index case poten-
tial had very low outbreak receptivity (stage 2 scores 
< 3). These findings likely reflect superior healthcare 

Fig. 6  Median duration of outbreaks, total number of outbreak weeks, and total number of cases, reported by each district from January 2016−
September 2018
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capacity in Costa than Selva Baja, and differences in 
climate between the two regions. Perú is a highly-
centralized country: resources and capacity are con-
centrated in the capital city of Lima and surrounding 
coastal cities, with lower healthcare capacity and access 
in Selva Baja. Furthermore, the combination of poor 
housing conditions, dense vegetation, and year-round 
high temperatures and humidity in Selva Baja facili-
tates arbovirus transmission in this region, while in 
Costa transmission wanes and healthcare systems can 
“recover” during dry periods. Temporally, vulnerability 

Table 2  Zero-inflated Poisson model results

Outcome parameterized as number of outbreak weeks in a given district over 
January 2016-September 2018. Stage 1: index case potential; stage 2: outbreak 
receptivity; stage 3: epidemic potential. RR: rate ratio; CI: posterior credible 
interval; S: summer; W: winter; Y: yes; N: no

Season El Niño RR (95% CI)

Stage 1 S – 1.24 (1.20, 1.29)

W – 1.26 (1.21, 1.31)

S Y 1.24 (1.19, 1.29)

S N 1.15 (1.09, 1.20)

W Y 1.19 (1.14, 1.23)

W N 1.24 (1.19, 1.30)

Stage 2 S – 1.28 (1.22, 1.34)

W – 1.28 (1.22, 1.34)

S Y 1.27 (1.21, 1.33)

S N 1.20 (1.13, 1.26)

W Y 1.21 (1.16, 1.26)

W N 1.26 (1.20, 1.32)

Stage 3 S – 1.19 (1.14, 1.25)

W – 1.11 (1.05, 1.18)

S Y 1.19 (1.13, 1.24)

S N 1.15 (1.09, 1.22)

W Y 1.12 (1.07, 1.17)

W N 1.15 (1.09, 1.22)

Table 3  Logistic model results

Outcome parameterized as one or more outbreaks in a given district over 
January 2016–September 2018. Stage 1: index case potential; stage 2: outbreak 
receptivity; stage 3: epidemic potential. OR odds ratio, CI posterior credible 
interval, S summer, W winter, Y yes, N no

Season El Niño OR (95% CI)

Stage 1 S – 5.17 (3.94, 7.22)

W – 5.39 (4.05, 7.67)

S Y 5.56 (4.18, 7.94)

S N 3.74 (2.68, 5.70)

W Y 5.19 (3.77, 7.83)

W N 5.33 (3.97, 7.75)

Stage 2 S – 3.74 (3.00, 4.89)

W – 3.60 (2.91, 4.64)

S Y 3.69 (2.95, 4.82)

S N 2.89 (2.28, 3.87)

W Y 3.45 (2.72, 4.56)

W N 3.46 (2.78, 4.51)

Stage 3 S – 1.57 (1.35, 1.84)

W – 1.62 (1.41, 1.89)

S Y 1.50 (1.29, 1.75)

S N 1.54 (1.27, 1.88)

W Y 1.49 (1.26, 1.79)

W N 1.54 (1.33, 1.80)

Table 4  Sensitivity analysis: stage 2 model, median outbreak 
duration

Zero inflated Poisson model results for stage 2 vulnerability score (outbreak 
receptivity). Outcome parameterized as median duration of outbreaks in a given 
district over January 2016–September 2018. RR rate ratio, CI posterior credible 
interval, Y yes, N no

Season El Niño RR (95% CI)

Summer – 3.10 (2.67, 3.54)

Winter – 3.31 (1.49, 4.40)

Summer Y 3.18 (2.76, 3.80)

Summer N 3.06 (2.72, 3.46)

Winter Y 4.52 (3.74, 5.62)

Winter N 2.54 (1.72, 3.04)

Table 5  Prediction model results

Prediction results from logistic regression models trained to two-thirds of the 
outcome data, and tested on remaining one-third. Outcome parameterized as 
one or more outbreaks in a given district over January 2016–September 2018. 
Stage 1: index case potential; stage 2: outbreak receptivity; stage 3: epidemic 
potential.AUC​ area under ROC curve,CI posterior credible interval, S summer; W 
winter, Y yes, N no

Season El Niño AUC (95% CI)

Stage 1 S – 0.901 (0.874, 0.929)

W – 0.885 (0.853, 0.918)

S Y 0.877 (0.842, 0.913)

S N 0.859 (0.795, 0.922)

W Y 0.914 (0.883, 0.944)

W N 0.927 (0.904, 0.950)

Stage 2 S – 0.867 (0.828, 0.905)

W – 0.824 (0.767, 0.882)

S Y 0.758 (0.689, 0.827)

S N 0.905 (0.862, 0.949)

W Y 0.889 (0.851, 0.927)

W N 0.866 (0.822, 0.910)

Stage 3 S – 0.673 (0.598, 0.747)

W – 0.608 (0.526, 0.690)

S Y 0.580 (0.490, 0.670)

S N 0.679 (0.530, 0.828)

W Y 0.658 (0.564, 0.753)

W N 0.614 (0.521, 0.707)
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was slightly lower in winter and non-El Niño periods 
than summer and El Niño, reflecting features of the A. 
aegypti lifecycle.

Vulnerability score was strongly associated with the 
risk and number of dengue outbreaks, however associa-
tions were slightly stronger for index case and outbreak 
receptivity than epidemic potential. This finding is not 
surprising, and suggests stage 3 scores (epidemic poten-
tial) are more relevant to diseases with direct human-
to-human transmission rather than those which are 
vector-mediated. Outbreak receptivity (stage 2) dem-
onstrated stronger association with outbreak duration 
than outbreak occurrence, lending support to the valid-
ity of our vulnerability model and suggesting that some 
districts with high index case potential but low outbreak 
receptivity may be successful at stemming outbreaks. 
Our prediction models largely support the findings of 
our inferential models, namely stage 1 and 2 vulnerabil-
ity scores (index case and outbreak receptivity, respec-
tively) performed extremely well for predicting dengue 
outbreaks, however stage 3 (epidemic potential) scores 
performed poorly.

Our approach has several limitations. First, the valid-
ity of our vulnerability scores is compromised by any 
uncertainty or bias in the predictors used to model each 
stage. Further, we modeled the EIP based only on tem-
perature, however this parameter varies even within a 
narrow temperature range, likely reflecting the effects of 
other determinants including host viremia, blood meal 
size, viral serotype, and others. We did not include these 
variables in our approach as they are difficult to param-
eterize, and we expect their effect on EIP to be markedly 
weaker than temperature. Finally, in validating our model 
we collapsed probable and confirmed dengue cases, how-
ever probable cases may actually be due to other arbovi-
ruses—including chikungunya and yellow fever, which 
are also transmitted by Ae. ageypti mosquitoes—or 
malaria. As our goal was to model vulnerability to any Ae. 
ageypti-vectored disease, misclassification of these other 
arboviruses as probable dengue does not compromise 
validation of our approach. While we did not intend to 
model vulnerability to malaria and other disease trans-
mitted by Anophelinae mosquitoes, misclassification of 
malaria as probable dengue is expected to compromise 
apparent validity of our models—that is, make perfor-
mance appear poorer than it truly is.

Despite these limitations, our approach represents 
a novel addition to the arbovirus modeling literature. 
While numerous other models have used ENSO and 
meteorological variables to predict or simulate dengue 
outbreaks, the use of other covariates is extremely limited 
[14, 30–37]. These efforts have largely focused on what 
we refer to as index case receptivity, with a single recent 

application including connectivity as a covariate, and, to 
our knowledge, no prior use of health care system quality 
as a covariate [38].

Beyond its novelty, our staged approach supports plan-
ning and resource allocation to prevent and mitigate 
outbreaks of dengue and other Ae. aegypti-vectored arbo-
viruses. Our findings suggest mosquito surveillance and 
control, syndromic surveillance, improved ability to iden-
tify index cases—through training of healthcare workers, 
improved diagnostic capacity, and other measures—and 
vaccination campaigns should be targeted to districts in 
Selva Baja and Costa with high index case potential (stage 
1). Investments in health-systems strengthening, in par-
ticular outbreak preparedness and response capacities, 
should instead be targeted to Selva Baja districts with 
high outbreak receptivity (stage 2). Had we detected a 
stronger predictive ability for epidemic potential with 
dengue outbreaks, spatial distribution of epidemic poten-
tial (stage 3) could be used to target efforts for halting 
regional and national transmission. In addition to iden-
tifying high-priority districts for intervention, our results 
also indicate capacity for index case detection and out-
break response is most critical in the summer and during 
El Niño events.

Conclusions
We present a three-stage approach to model the distribu-
tion of dengue outbreak vulnerability in Perú, facilitating 
tiered deployment of measures to prevent and mitigate 
outbreaks in both space and time. Our results demon-
strate high validity of stage 1 (index case potential) and 
stage 2 (outbreak receptivity) scores for predicting out-
breaks, and identify Selva Baja and Costa to be most vul-
nerable regions to dengue outbreaks, and summer and El 
Niño events to be the most vulnerable periods. Moving 
beyond the theoretical validity of these models and maps, 
we have conducted workshops and focus groups with 
representatives of health and environmental agencies in 
Perú to test their usability; we will present these results in 
a separate publication.

While we used dengue surveillance data to demon-
strate the validity of our staged vulnerability model, 
their construction reflects factors common to out-
breaks of other Ae. ageypti-vectored diseases in Perú, 
including Zika, yellow fever, and chikungunya. Namely, 
stage 1 and stage 2 vulnerability scores hold utility for 
predicting outbreaks of Ae. aegypti-vectored diseases, 
to which Selva Baja and Costa are particularly vulner-
able. Furthermore, elements of stage 2 scores which 
reflect health systems strength are relevant to infec-
tious disease outbreaks in general. Finally, successful 
extension of this framework from hemorrhagic fevers 
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in Africa to Ae. aeypti-vectored diseases in Perú dem-
onstrates its broad utility for outbreak and pandemic 
preparedness across settings and diseases.
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