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Abstract 

Background:  Hemorrhagic fever with renal syndrome (HFRS) is still attracting public attention because of its out‑
break in various cities in China. Predicting future outbreaks or epidemics disease based on past incidence data can 
help health departments take targeted measures to prevent diseases in advance. In this study, we propose a mul‑
tistep prediction strategy based on extreme gradient boosting (XGBoost) for HFRS as an extension of the one-step 
prediction model. Moreover, the fitting and prediction accuracy of the XGBoost model will be compared with the 
autoregressive integrated moving average (ARIMA) model by different evaluation indicators.

Methods:  We collected HFRS incidence data from 2004 to 2018 of mainland China. The data from 2004 to 2017 
were divided into training sets to establish the seasonal ARIMA model and XGBoost model, while the 2018 data were 
used to test the prediction performance. In the multistep XGBoost forecasting model, one-hot encoding was used to 
handle seasonal features. Furthermore, a series of evaluation indices were performed to evaluate the accuracy of the 
multistep forecast XGBoost model.

Results:  There were 200,237 HFRS cases in China from 2004 to 2018. A long-term downward trend and bimodal sea‑
sonality were identified in the original time series. According to the minimum corrected akaike information criterion 
(CAIC) value, the optimal ARIMA (3, 1, 0) × (1, 1, 0)12 model is selected. The index ME, RMSE, MAE, MPE, MAPE, and 
MASE indices of the XGBoost model were higher than those of the ARIMA model in the fitting part, whereas the RMSE 
of the XGBoost model was lower. The prediction performance evaluation indicators (MAE, MPE, MAPE, RMSE and 
MASE) of the one-step prediction and multistep prediction XGBoost model were all notably lower than those of the 
ARIMA model.

Conclusions:  The multistep XGBoost prediction model showed a much better prediction accuracy and model 
stability than the multistep ARIMA prediction model. The XGBoost model performed better in predicting complicated 
and nonlinear data like HFRS. Additionally, Multistep prediction models are more practical than one-step prediction 
models in forecasting infectious diseases.
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Background
Hemorrhagic fever with renal syndrome (HFRS) is a 
zoonotic disease caused by hantaviruses that cause a high 
degree of harm to humans. To date, more than 28 han-
taviruses resulting in human diseases have been identi-
fied worldwide. Most HFRS cases occur in Asian and 
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European countries, such as China, South Korea and 
Russia. More than 100,000 cases of HFRS occur every 
year worldwide, and China accounts for more than 90 % 
of them [1, 2]. In recent years, the number of HFRS cases 
in mainland China has shown an overall downward trend 
[3], but it is still prevalent in some regions, such as Hei-
longjiang, Liaoning, Jilin, Shandong, Shanxi and Hebei 
provinces [4]. It should be pointed out that epidemic 
areas for rodent have a tendency to spread towards cit-
ies, as hantavirus is carried and spread by rodents. The 
main transmission routes from rodents to humans are 
aerosolized excreta inhalation and contact infection. 
Person-to-person spread may occur but is extremely rare 
[3–5]. The clinical symptoms of HFRS are mainly charac-
terized by fever, hemorrhaging and kidney damage with a 
4 to 46 day incubation period [5]. HFRS can lead to death 
if the patient is not treated in time. The Chinese Center 
for Disease Control (CDC) established a surveillance sys-
tem for HFRS in 2004 and classified it as a class II infec-
tious disease. The surveillance system requires newly 
confirmed cases of HFRS to be reported within 12  h, 
which ensures the accuracy and timeliness of the data [6]. 
Although the government and health departments have 
taken on many control measures, such as active rodents 
control, vaccination implementation, health education 
implementation, environmental management of the epi-
demic areas, and disease surveillance strengthening, 
HFRS still severely affects people’s health with approxi-
mately 9,000–30,000 cases annually in China [7].

To delineate the changing trend in the incidence of 
infectious diseases, domestic and foreign researchers 
have applied various statistical and mathematical models 
to the prediction of infectious diseases, such as random 
forest [8], gradient boosting machine (GBM) [9] and sup-
port vector machine models [10]. At present, some mod-
els have been used in predicting HFRS, including neural 
networks [11] and generalized additive models (GAMs) 
[12]. Most of these methods are based on one-step fore-
casting. The autoregressive integrated moving average 
(ARIMA) model, as a fundamental method in time series 
analysis that regresses the lag value of the time series 
and random items to build a model, has been applied in 
many fields [13]. Although an ARIMA model can cap-
ture the linear characteristics of infectious disease series 
well, such as the autoregressive (AR) term and moving 
average(MA) term, some information may be lost when 
it analyzes the residuals consisting of non-linear infor-
mation [14]. XGBoost is a boosting algorithm based on 
the evolution of gradient boosting decision tree (GBDT) 
algorithm, which has achieved remarkable results in 
practical applications due to its high accuracy, fast speed 
and unique information processing scheme. Compared 

with traditional statistical models, it has advantages in 
predicting nonlinear data [15–19]. Previous studies usu-
ally applied one-step predictive statistical models to 
characterize and predict epidemic trends in infectious 
diseases. Currently, a multistep XGBoost model has not 
been used to forecast infectious diseases such as HFRS.

In this study, we aim to develop a prediction model for 
HFRS in mainland China by using one-step and multistep 
XGBoost models and comparing them with an ARIMA 
model.

Methods
Data collection
We collected HFRS incidence data from 2004 to 2018 
from the official website of the National Health Commis-
sion of the People’s Republic of China (http://​www.​nhc.​
gov.​cn). Based on the requirements of China’s Infectious 
Disease Control Law, hospital physicians must report 
every HFRS case within 12 h to the local health author-
ity. Once the patient is diagnosed with a suspected case 
based on clinical symptoms, patient blood samples are 
collected and sent to local CDC laboratories for serologi-
cal confirmation; if the result is positive, it is considered 
as a confirmed case. Local health authorities later report 
monthly HFRS cases to the national health department 
for surveillance purposes. However, the monitoring sys-
tem relies on hospitals passively monitoring the occur-
rence of infectious diseases, and there will be a certain 
time delay in information collection. If the patient’s 
symptoms are mild and not require hospitalization, 
underreporting may occur [20]. The dataset analyzed 
during the study is included in Supplementary Material 1. 
The HFRS data from 2004 to 2017 were adopted to estab-
lish the seasonal ARIMA model and XGBoost model, 
while the 2018 data were used for model verification.

ARIMA model
An ARIMA model is a time series forecasting method that 
was first proposed by Box and Jenkins in 1976  [21]. The 
principle of the ARIMA model is to adopt appropriate data 
conversion to transform nonstationary time series into sta-
tionary time series and then adjust the parameters to find 
the optimal model. Finally, the changes in past trends are 
quantitatively described and simulated to predict future 
outcomes [13, 22]. The specific procedures for establish-
ing the seasonal ARIMA model were as follows: first, we 
performed a Box-Cox transformation to smooth the vari-
ance of the original HFRS time series. Simultaneously, 
long-term trends and seasonal differences were stabilized 
through first-order differences and seasonal differences. 
Then, we preliminarily judge the possible parameter values 
of the ARIMA model based on the truncation and tailing 
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properties of the autocorrelation function (ACF) and par-
tial autocorrelation function (PACF) diagrams. The advan-
tages and disadvantages of the model fit were evaluated by 
the corrected Akaike information criterion (CAIC) value, 
and the model with the smallest CAIC value was consid-
ered the optimal model. After the order of the specific 
parameters was determined, a parameter test was per-
formed through maximum likelihood estimation (MLE). 
Finally, the Ljung-Box test judges whether the residual 
sequence is white noise.

Building the XGBoost model
XGBoost, a kind of boosting algorithm, which assembles 
multiple learning algorithms to achieve a better predic-
tive performance than any of the constituent learning 
algorithms alone, has excelled in many fields. Compared 
with the traditional GBDT algorithm, XGBoost applies a 
second-order Taylor expansion to the loss function and 
simultaneously implements the first derivative and the 
second derivative. In addition, a regularization term is 
added to the objective function, which improves the gen-
eralizability of a single tree and reduces the complexity 
of the objective function. In short, XGBoost has attracted 
the attention of researchers due to its fast speed, excel-
lent classification effect, and ability to allow custom loss 
functions.

The classification and regression tree (CART) algo-
rithm, first proposed by Breiman et al., refers to the gen-
eral term of a classification tree and regression tree. The 
CART classification tree introduces the Gini coefficient 
to replace the information gain or information gain rate. 
The regression tree adopts different methods to evaluate 
the effect, including the prediction error (mean squared 
error, log error, etc.). Therefore, the node is no longer a 
category but a numerical value. In a CART model, for any 
feature j, there is a corresponding segment point s. If j is 
less than s, it is divided into the left-hand subtree. Other-
wise, it is divided into the right-hand tree, as in formula 
(1).

The objective function of a typical CART regression 
tree is defined in formula (2):

As shown in formula (3), find the corresponding j and 
s that minimize the MSE of c1 and c2, respectively, and 
minimize the sum of the MSE between the two parts of 
c1 and c2. When we traverse all the segment points s of 

(1)
R1

(
j, s

)
=

{
x|x(j) ≤ s

}
and R2

(
j, s

)
=

{
x|x(j) > s

}

(2)
∑

xi∈Rm

(yi − f (xi))2

all features j, we can find the optimal j and s, and finally 
obtain a regression tree.

The CART regression tree applies the mean or median 
of the final leaves to predict the output. To avoid overfit-
ting, cost complexity pruning (CCP) is used to prune the 
non-leaf node with the smallest error gain and delete the 
child nodes with the non-leaf node.

The XGBoost algorithm is mainly composed of two 
parts: the decision tree algorithm and gradient boosting 
algorithm. Gradient boosting is an excellent technique 
for constructing prediction models and a representa-
tive algorithm for boosting. The theory of boosting is 
to establish weak evaluators individually and iteratively 
integrate multiple weak evaluators. The gradient boost-
ing tree uses the CART algorithm as the main structure. 
Therefore, the steps of the XGBoost algorithm can be 
expressed as follows (formular (5)):

In the XGBoost model, every leaf node has a forecast-
ing score, called the leaf weight. fk(xi) is the value of all 
samples on this leaf node, where  represents the th deci-
sion tree and  represents the feature vector of sample. 
Each tree was added iteratively to keep the predicted 
value ŷi as close as possible to the actual value yi. There-
fore, the following function reaches the minimum after t 
iterations:

As shown in formula (6), the objective function con-
sists of two parts: a loss function and a regularization 
term. The loss function assesses the forecasting function 
of the XGBoost model on the training data, and the regu-
larization term �

(
ft
)
 prevents the model from being too 

complicated. ŷ(t−1) is the predicted value of the last itera-
tion and ft is a new function that the model learns. Next, 
a second-order Taylor development of the error term was 
performed on the objective function. Then the first deriv-
ative and the second derivative are defined as follows:

(3)min
j,s

[
min

xi∈R1(j,s)
(yi− c1)2 + min

xi∈R1(j,s)
(yi− c2)2

]

ĉ1 = ave
(
yi | xi ∈ R1(j, s)

)

(4)ĉ2 = ave
(
yi | xi ∈ R2(j, s)

)

(5)ŷ = φ(xi) =

K∑

k=1

fk(xi)

(6)

Obj(t) =

n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft(xi)

)
+�(ft)+ constant
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First, we define the mapping function of the decision 
tree: q indicates the structure of the tree, and w is the leaf 
node weight vector (the value of the sample predicted by 
the model).

The complexity of the XGBoost tree is shown in for-
mula (10). T is the quantitative complexity of leaf nodes 
in the tree, and the sum of squares term represents the L2 
regularization term of the leaf node.

After combining the defined loss function and com-
plexity of the tree, the objective function can be 
expressed by formula (13).

Because it is not possible to traverse all the tree struc-
tures, constructing a decision tree based on space divi-
sion is an NP problem. XGBoost uses a greedy algorithm 
to traverse the segmentation points of all features in the 
CART regression tree and calculates the gain before 
and after the segmentation point to determine whether 
a node continues to grow. The node will split when the 
value of the objective function after splitting is higher 
than the gain of the single-leaf node. At the same time, 
the maximum depth of the tree and a threshold should 
be set to limit  its growth. The gain formula is shown in 
formula (14):
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i=1

[
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i

)
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1

2
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2
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]
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1
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2
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One-hot encoding was used to address the seasonality. 
Three types parameters should be set when building the 
XGBoost model: general parameters, booster parameters 
and task parameters. The XGBoost model also draws on 
the idea of random forest, introducing row sampling and 
column sampling that can reduce the amount of calcula-
tion and prevent overfitting. Moreover, it introduces the 
early-stopping mechanism to prevent overfitting. In this 
study, the booster parameter is gbtree; early_stopping_
round was set to 5; subsample and colsample_bytree 
were set from 0.3 to 0.7; max_depth was set to 2 and 3; 
min_child set to 1 and 2, the learning rates of XGBoost 
were set to 0.04, 0.05 and 0.06; and eval_metric was set 
to ‘rmse’. A grid search was conducted to exhaustively 
search for specified parameter values when the poten-
tial parameter values were ordered and combined. Nota-
bly, the performance of the XGBoost was evaluated by 
tenfold cross-validation and the RMSE. Additionally, 
XGBoost can rank the importance of variables by the 
frequency functions used to split the feature. After the 
XGBoost model was built, the accuracies of the one-step 
forecast and multistep forecast were compared by the 
RMSE, MAE and MAPE.

One‑step forecasting and multistep forecasting
Generally, a one-step time series uses actual histori-
cal data, such as data at time t-n, time t-(n-1), time t to 
predict the value at time t + 1 in the next step. In con-
trast, when performing multistep prediction, single-step 
prediction is performed and the predicted value is used 
(instead of the actual value) as an input variable for the 
second step of prediction. Then, the process was repeated 
until all the predicted values were obtained [23, 24]. 
There are four multistep forecasting strategies: direct 
forecasting, recursive forecasting, direct recursive hybrid 
forecasting and multioutput forecasting. One-step fore-
casting is more accurate, but it will prevent the model 
from simulating the trends in the next month. When the 
forecast cycle is long, a multistep forecast is prone to face 
larger error accumulation. When the forecasted value is 
used as input, the error will inevitably accumulate with 
the input value in the next step. In this study, one-step 
forecasting and multistep forecasting were carried out.

Model comparison and data analysis
Model evaluation and comparison are mainly judged by 
the accuracy of the model. The accuracy refers to the 
degree to which the predicted result matches with the 
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Fig. 1  Time series plot for cases of HFRS in mainland China from January 2004 to December 2018

Fig. 2  Monthly chart of HFRS cases from 2004 to 2017
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actual result, so the error can be used to evaluate the 
accuracy of the prediction model. The smaller the error 
is, the better the fitting effect. Model evaluation gener-
ally includes two parts: training sample evaluation and 
prediction sample evaluation. To better compare the 
accuracy of the ARIMA and XGBoost models, a series of 
evaluation indices were applied in this study. mean error 
(ME), root mean squared error (RMSE), mean absolute 
error (MAE), mean percentage error (MPE), mean abso-
lute percentage error (MAPE), mean absolute scaled 
error (MASE) and autocorrelation of errors at lag 1 
(ACF1). Generally, the larger the criteria are, the greater 
the error size is. Theil’s U statistic measures the accuracy 
by comparing the predicted results with the prediction 
results using minimal historical data. It tends to place 
more weight on large errors by squaring the deviations 
and overstating errors, which can help eliminate methods 
with large errors. Theil’s U < 1 indicates that the predicted 
results are better than the expected results.

The HFRS data analysis process was completed in R 
version 3.6.2. Packages like TSstudio, forecast, xgboost 
were included to achieve different functions. In addition, 
we set the statistical significance level at 0.05.

Results
ARIMA model
As shown in Fig. 1, the original time series graph showed 
a slight downward trend and seasonal variation. The 
number of HFRS cases had a bimodal seasonal distribu-
tion throughout the year (Fig.  2), one from October to 
January of the following year and the other from March 
to June, which means that the time series was not sta-
tionary. Therefore, logarithmic or square root conversion 
was used to transform the time series variance. The time 
series diagram after applying a Box-Cox transformation 
is shown in Fig. 3. The small gray blocks of different sizes 
show the proportion of each component. The additive 
time series decompositions subjected to Box-Cox trans-
formation were arranged in order of magnitude, includ-
ing the original data, season, trend and noise element. 
The seasonal component showed obvious periodicity, 
while the trend showed an overall decrease from 2004 
to 2010 but increased briefly in 2010–2013. In addition, 
there was no noticeable form of noise.

To eliminate seasonal characteristics and long-term 
trends in the time series, the first difference (d = 1) and 
seasonal difference (D = 1) were used (Fig.  4). The ADF 
test demonstrated that the time series after the difference 

Fig. 3  Seasonal decomposition of the Box-Cox-transformed HFRS cases
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Fig. 4  Plot of the Box-Cox-transformed HFRS cases

Fig. 5  Autocorrelation and partial autocorrelation plots of the differenced HFRS incidence series
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was stable (t =−  6.4674, p < 0.01). Consequently, from 
d = 1 and s = 12, the seasonal ARIMA model can be pre-
liminarily denoted by ARIMA (p, 1, q) × (P, 1, Q)12.

As seen in the graphs of the ACF and PACF (Fig.  5). 
The ACF had obvious peaks at lags 3 and 12, indicat-
ing respectively nonseasonal MA (3) components and 

seasonal MA (1) components respectively. In addition, in 
the PACF graph, the obvious lag peaks at 3 and 12 indi-
cate a nonseasonal AR (3) element and a seasonal AR (1) 
element. Therefore, the parameters were set as follows: 
p from 0 to 3, q from 0 to 3, P from 0 to 1 and Q from 
0 to 1. By assembling all possible values of each param-
eter, multiple candidate models are generated. Nine mod-
els remained after the residual and parameter test was 
implemented, and the ARIMA (3, 1, 0) × (1, 1, 0)12 model 
had the smallest CAIC (427.1528) (Table 1). The Ljung–
Box test (Q = 7.5588, p = 0.9944) indicated that the 
sequence residual was white noise, which means that the 
final fitted data sequence was stationary. The estimated 
parameters of the ARIMA (3, 1, 0) × (1, 1, 0)12 model are 
listed in Table 2. The curves of training, forecasting and 
the actual HFRS incidence by ARIMA model are pictured 
in Fig. 6.

XGBoost model
The grid search algorithm was used in the XGBoost 
model to realize the automatic optimization of the 
parameters. In this research, we realized automatic 
optimization of max_depth, n_estimators and min_
child_weight. According to the grid search and tenfold 
cross-validation, the possible parameters are shown in 
Table 3. Among all six combined parameters, the first had 
the lowest test RMSE (238.3084). The optimal parameters 
of the XGBoost model were listed in Table 4. The impor-
tance of a feature is determined by whether the forecast-
ing capability changes significantly when the feature is 

Table 1  CAIC value and Ljung-Box Q value of the candidate 
seasonal ARIMA models

Model CAIC Ljung-Box Q P value

ARIMA (0,1,3) × (1,1,1)12 429.244 7.091 0.994

ARIMA (0,1,3) × (1,1,0)12 427.345 7.429 0.995

ARIMA (0,1,3) × (0,1,1)12 428.220 12.07 0.914

ARIMA (3,1,0) × (1,1,1)12 429.108 7.347 0.992

ARIMA (3,1,0) × (1,1,0)12 427.154 7.559 0.994

ARIMA (3,1,0) × (0,1,1)12 427.666 12.552 0.896

ARIMA (3,1,3) × (1,1,1)12 430.864 7.068 0.972

ARIMA (3,1,3) × (1,1,0)12 428.906 7.333 0.979

ARIMA (3,1,3) × (0,1,1)12 429.528 12.340 0.779

Table 2  Estimated parameters of the seasonal ARIMA  (3,1,0) × 
(1,1,0)12 model

Model parameter Estimate Standard error 95 % CI of the 
estimate

AR3 − 0.311 0.087 (− 0.481, − 0.142)

Seasonal AR1 − 0.405 0.082 (− 0.565, − 0.245)

Fig. 6  The curves of the fitted ARIMA model, forecasted ARIMA model and actual HFRS incidence series
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replaced by random noise. In the XGBoost algorithm, 
we input several features to calculate the feature impor-
tance and determine how each feature contributes to 
the prediction performance in the training step (Fig. 7). 
Characteristic variables such as x_lag12 and x_lag1 had 
a significant impact on the prediction of the number of 
HFRS cases. Finally, based on the hyperparameter opti-
mization results, the final one-step forecasting model was 
built. The curves of training, forecasting and the actual 
HFRS incidence by the XGBoost model are showed in 
Fig. 8.

Table 3  Possible parameters of the XGBoost model

Model
Parameters

Best
Rounds

Test
RMSE

Train
RMSE

SubSamp
Rate

ColSamp
Rate

Depth Eta MinChild

1 105 238.308 161.126 0.400 0.600 2 0.050 2

2 113 238.591 160.885 0.400 0.400 2 0.050 2

3 96 239.072 155.984 0.400 0.500 2 0.060 2

4 95 239.153 154.751 0.400 0.600 2 0.060 2

5 133 239.843 138.405 0.600 0.300 2 0.050 1

6 179 239.886 136.431 0.600 0.300 2 0.040 2

Table 4  List of the optimal parameters and description of the 
XGBoost model

Parameters Value

Booster ‘gbtree’

Objective ‘reg: squared error’

Early_stopping_rounds 5

Eval_metric ‘rmse’

Min_child_weight 2

Subsample 0.4

Colsample_bytree 0.6

Eta 0.05

Nrounds 200

Depth 2

Fig. 7  Importance of the XGBoost characteristic variables
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Comparison of the models
Table  5 shows the one-step and multistep forecasting 
accuracies of the two models. In the training sample, the 
ME, MAE, MAPE, MPE and MASE of XGBoost were 
higher than those of the ARIMA model, whereas the 
RMSE of XGBoost was lower than that of the ARIMA 
model. In the test sample, the ME, RMSE, MAE, MPE, 

MAPE and MASE of XGBoost model were obviously 
lower than those of the ARIMA model in both one-step 
forecasting and multistep forecasting. Therefore, the 
XGBoost model had a better forecasting performance in 
the prediction of the number of HFRS cases.

Fig. 8  The curves of the fitted XGBoost model, forecasted XGBoost model and actual HFRS incidence series

Table 5  The one-step and multistep forecasting accuracy of the ARIMA and XGBoost models

Model
Strategy
Index

ARIMA XGBoost

One-step Multistep One-step Multistep

Training set Test set Training set Test set Training set Test set Training set Test set

ME − 7.149 − 61.448 − 7.149 − 259.878 8.111 33.622 8.111 97.931

RMSE 181.977 249.276 181.977 302.781 166.311 178.547 166.311 223.187

MAE 108.160 185.367 108.160 259.878 113.219 132.055 113.219 173.403

MPE − 0.937 − 6.575 − 0.937 − 30.121 − 2.403 2.383 − 2.403 6.348

MAPE 10.293 18.561 10.293 30.121 11.596 12.353 11.596 15.615

MASE 0.442 0.757 0.442 1.062 0.462 0.526 0.462 0.691

ACF1 0.016 − 0.169 0.016 − 0.159 0.424 − 0.232 0.424 − 0.047

Theil’s U NA 0.375 NA 0.441 NA 0.273 NA 0.398
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Discussion
This study showed the seasonal distribution of HFRS 
cases. The main incidence peaks were concentrated from 
October to January, especially in November of the fol-
lowing year. The second incidence peak occurred from 
March to June. The overall shape was bimodal, which 
was consistent with the literatures reported in the South 
Korean army and different regions of China [4, 25]. In 
addition, the incidence of HFRS in mainland China from 
2004 to 2018 showed an overall downward trend, but 
there was a clear upward trend in 2010 that continued 
until 2013. The periodicity of HFRS incidence may be 
related to climate factors, the number of rodents in the 
wild, and the accumulation speed of susceptible people. 
As an important climate factor, the monsoon phenom-
enon may affect periodic trends in HFRS, which can 
change annually. Since the data collected in this study 
were not from a sufficiently long period, the periodicity 
was not obvious in this study. The influence of meteoro-
logical factors and monsoon phenomena on HFRS can be 
considered in the future.

Therefore, understanding the changing trend in HFRS 
is particularly important for exploring the influencing 
factors. It is also crucial for predicting epidemics and for-
mulating corresponding preventive and early-warning 
measures. The accuracy of infectious disease forecasting 
has drawn the attention of a number of scholars [9, 26, 
27]. Many mathematical methods and statistical mod-
els have been applied to predict HFRS incidence. The 
ARIMA model is developed based on a linear regression 
model, combining the advantages of autoregressive and 
moving average models, which can explain the data well. 
We can obtain the coefficient of each variable and know 
whether each coefficient is statistically significant. Sta-
tionary data are a prerequisite for establishing an ARIMA 
model; thus, the seasonal ARIMA model needs to trans-
form nonlinear data into linear data after differencing 
and transformation. According to the characteristics of 
HFRS, we decomposed the infectious disease time series 
into trend components, seasonal components and ran-
dom fluctuation components. The more differences use, 
the more data are lost. In this study, the first-order and 
12th-order differences were used, so 13 months of data 
were lost. When forecasting, the ARIMA model consid-
ers only historical data to understand the disease trend 
and obtain a more accurate prediction effect instead 
of requiring specific influencing factors. Therefore, the 
ARIMA method is easy to master and widely used. How-
ever, the nonlinear mapping performance of ARIMA 
models is weak, and its accuracy is unsatisfactory when it 
tries to fit and predict nonlinear and complex infectious 
disease time series. For example, in this study, the fitting 
effect was not perfect when the disease trend changed 

suddenly, and the error between the fitted value and the 
actual value in May 2010 and 2013 was relatively large 
(Fig.  6). Many factors can affect HFRS, including mete-
orological factors and human-made control measures, 
most of which have a nonlinear relationship with the 
number of cases, so when the number of HFRS suddenly 
increases or decreases, these nonlinear factors may affect 
the fitting accuracy of the ARIMA model. In addition, the 
ARIMA method is more suitable to predict a short-term 
time series. Thus, it is necessary to constantly collect data 
and obtain the longest time series possible. Based on the 
characteristic of the ARIMA model and HFRS, this study 
used the monthly incidence data of HFRS from 2004 to 
2017 to establish a seasonal ARIMA model. The results 
showed that the ARIMA (3, 1, 0) × (1, 1, 0)12 model can 
better fit and predict the monthly incidence than other 
forms.

The XGBoost model is a powerful machine learning 
algorithm, especially in terms of the speed and accuracy 
are concerned. It is good at dealing with nonlinear data 
but has poor interpretability. From studies in other fields, 
the XGBoost model performed well in predicting non-
linear time series [28–31]. By integrating multiple CART 
models, XGBoost model can achieve a better generaliza-
bility than a single model, which means that the XGBoost 
has a larger postpruning penalty than a GBDT model and 
makes the learned model less prone to overfitting. Moreo-
ver, a regularization term is added to control the complex-
ity reduce the variance of the model. Moreover, XGBoost 
model is a hyperparameter model [32], that can control 
more parameters than other models and is flexible to tune 
parameters. Compared with the complexity of the condi-
tions that the ARIMA model needs to meet, the modeling 
process of the XGBoost is very simple. In this study, a grid 
search was conducted to exhaustively search for speci-
fied parameters, and tenfold cross-validation was used to 
evaluate the performance of the XGBoost. The grid search 
made XGBoost achieve a good generalizability but also 
consumed more calculation resources and storage space. 
In addition, XGBoost model fit the range of normal val-
ues more stably, but the ARIMA model was slightly bet-
ter than the XGBoost model when fitting outliers (Fig. 8). 
This finding is mainly due to the following reasons: during 
ARIMA modeling, the best parameters were determined 
by the minimum CAIC and residual white noise of the 
training set, and the problem of overfitting was not con-
sidered. For the XGBoost model, to prevent overfitting, 
tenfold cross-validation and an early-stopping mechanism 
were used to select the best parameters. These factors 
increased the prediction performance of the XGBoost 
model but reduced the fitting effect of outliers. With 
these characteristics, our study applied it in prediction 
of the incidence of HFRS. We tried one-step forecasting 
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and multistep XGBoost forecasting models to predict 
HFRS cases in mainland China. The results showed that 
the MAEs of the one-step and multistep XGBoost models 
were 132.055 and 173.403 respectively, which were 28.76 
and 33.27 % lower than that of ARIMA model. The MAPE 
values were 12.353 and 15.615, which were 33.45 and 
48.16 % lower than that of the ARIMA model. The RMSEs 
were 178.547 and 223.187, which were 28.37 and 26.29 % 
lower than that of ARIMA model.

As predicted, the one-step prediction accuracy of the 
two models was better than the multistep prediction 
accuracy. From the perspective of predicting infectious 
diseases, each predicted value of one-step prediction is 
obtained from the actual value, and it is unrealistic to pre-
dict diseases that have not occurred. Multistep prediction 
uses the previous prediction value as input to predict the 
next value, which will produce cumulative errors, but it 
has practical significance for predicting infectious diseases 
that have not occurred. The results indicated that the pro-
posed one-step and multistep XGBoost model can signifi-
cantly improve the accuracy of the overall prediction. The 
value of Theil’s U also proved this finding. From the per-
spective of the prediction accuracy and prediction stability, 
the XGBoost model is suitable for HFRS prediction tasks. 
In other words, by integrating the prediction results of 
multiple regression trees, the XGBoost model can achieve 
better prediction results than the ARIMA model in the 
one-step forecasting and multistep forecasting.

Conclusions
In this paper, we built a seasonal ARIMA model and 
XGBoost model to conduct one-step and multistep 
prediction of the number of HFRS cases in mainland 
China for 2004 to 2018. The multistep XGBoost predic-
tion model showed a much better prediction accuracy 
and model stability than the multistep ARIMA pre-
diction model. The XGBoost model performed better 
in predicting complicated and nonlinear HFRS data. 
Additionally, a multistep prediction model has more 
practical significance than one-step prediction for fore-
casting infectious diseases.
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