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Abstract

Background: In addition to rotavirus and norovirus, human adenovirus (HAdV) and classic human astrovirus (classic
HAstV) are important pathogens of acute diarrhea in infants and young children. Here, we present the molecular
epidemiology of HAdV and classic HAstV in children with acute diarrhea in Shanghai.

Methods: Fecal specimens were collected from 804 outpatient infants and young children diagnosed with acute
diarrhea in Shanghai from January 2017 to December 2018. All of the samples were screened for the presence of
HAdV and classic HAstV. HAdV and classic HAstV were detected using traditional PCR and reverse-transcription PCR,
respectively. All of the HAdV and classic HAstV positive samples were genotyped by phylogenetic analysis.

Results: Among the 804 fecal samples, 8.58% (69/804) of samples were infected with either HAdV or classic HAstV,
and five were co-infected with two diarrhea viruses. The overall detection rates of HAdV and classic HAstV were
3.47% (28/804) and 5.22% (42/804), respectively. Four subgroups (A, B, C, and F) and seven genotypes (HAdV-C1,
—(C2, —B3, —C5, —A31, —F40, and -F41) of HAdV were detected. Subgroup F had the highest constituent ratio at
64.29% (18/28), followed by non-enteric HAdV of subgroup C (21.43%, 6/28) and subgroup B 10.71% (3/28). HAdV-
F41 (60.71%, 17/28) was the dominant genotype, followed by HAdV-C2 (14.29%, 4/28) and HAdV-B3 (10.71%, 3/28).
Two genotypes of classic HAstV (HAstV-1 and HAstV-5) were identified in 42 samples during the study period;
HAstV-1 (95.24%, 40/42) was the predominant genotype, and the other two strains were genotyped as HAstV-5. No
significant differences were found between boys and girls in the detection rates of HAdV (P = 0.604) and classic
HAstV (P=0.275). Over half of the HAdV infections (82.14%, 23/28) and classic HAstV infections (66.67%, 28/42)
occurred in children less than 36 months. Seasonal preferences of HAdV and classic HAstV infections were summer
and winter, respectively. In this study, the common clinical symptoms of children with acute diarrhea were diarrhea,
vomiting, fever and abdominal pain.

Conclusions: Our findings indicate that HAdV and classic HAstV play important roles in the pathogenesis of acute
diarrhea in children in Shanghai. Systematic and long-term surveillance of HAdV and classic HAstV are needed to
monitor their prevalence in children and prevent major outbreak.
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Background

Acute diarrhea is one of the major health problems in
children under 5years old. Approximately 1.0 billion
children <5 years of age are infected with diarrheal dis-
eases, and 0.45 million deaths occur due to diarrhea
each year [1-3]. Diarrhea can be caused by various types
of viruses, bacteria, and parasites. Viruses have long been
considered the most important pathogens responsible
for acute gastroenteritis, with rotavirus group A and
norovirus being the most prominent causes of acute
diarrhea in children [4—6]. Human adenovirus and clas-
sic human astrovirus are also recognized as important
causes of sporadic diarrhea and outbreaks of diarrhea in
children {7, 8].

Human adenovirus (HAdV) belongs to the genus
Mastadenovirus of the family Adenoviridae. HAdV is
non-enveloped, double-stranded, 26—45 kbp linear DNA
viruses that possess an outer capsid and inner core
structural proteins. The outer capsid comprises fiber
proteins, penton, and hexon. The fiber proteins are at-
tached to the penton base, and penton is the second-
most abundant component consisting of 12 penton
bases. The hexon is the principal component of the cap-
sid. HAdV are categorized into seven species (HAdV-A
through HAdV-G) based on genomic sequence analysis,
and more than 100 genotypes have been recognized [9-
11]. Different genotypes have been identified by multi-
plex PCR techniques and sequencing of targeting fiber
genes or hexon genes [12, 13]. HAdV infections lead to
disease of several human systems, including acute re-
spiratory illness, acute gastroenteritis, conjunctiva,
hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pan-
creatitis, nephritis, and meningoencephalitis [13]. Geno-
types 40 and 41 of HAdV-F are the most frequently
reported causes of HAdV-associated diarrhea in young
children and are known as enteric HAdV. Indeed,
HAdV-40 and 41 are responsible for 1-20% of diarrhea
cases in both outpatients and hospitalized children
worldwide [14—18]. Some cases of acute diarrhea in chil-
dren have been reported to be associated with HAdV-
12, -18, and-31 of HAdV-A. Moreover, HAdV-B,
HAdV-C, HAdV-D, and HAdV-G have also been de-
tected in fecal samples from children with acute gastro-
enteritis [14, 15, 18, 19].

Human astrovirus (HAstV) belongs to the Astroviridae
family, which is divided into two genera, Mamastrovirus
and Avastrovirus, based on their ability to infect mam-
malian and avian species, respectively. HAstV is non-
enveloped, positive sense, single-stranded RNA viruses.
The HAstV genome is 6.8—-7.9 kb in length and consists
of a 5 untranslated region (UTR), followed by three
open reading frames (ORFs) (ORFla, ORF1b, and
ORF2), a 3" UTR, and a poly A tail. ORFla and ORF1b
encode nonstructural proteins, including the RNA-
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dependent RNA polymerase (RdRp), while ORF2 en-
codes the capsid protein precursor [20]. The initial
prototype strain of the human astrovirus species was ori-
ginally isolated in 1975, and is known as the classic hu-
man astrovirus (classic HAstV). With the development
of next-generation sequencing technologies, two novel
groups of highly divergent HAstV, Melbourne (MLB)
and Virginia/Human-Mink-Ovine-like (VA/HMO), have
been identified in human stools of individuals with diar-
rhea worldwide [7, 21, 22]. The overall detection rate of
novel HAstV in stools was much lower than that of clas-
sic HAstV, which remains the second or third most
common viral pathogen responsible for diarrhea in
young children. Until now, eight genotypes of classic
HAstV (HAstV-1 to HAstV-8) have been identified [23].
Globally, classic HAstV is responsible for 2-18.8% of
cases of acute diarrhea in children. HAstV-1 is the most
prevalent genotype detected in children, whereas
HAstV-2-HAstV-8 are less prevalent [14, 20, 24—26].

In Shanghai, the majority of previous studies have fo-
cused on the molecular and epidemiological characteris-
tics of rotavirus and norovirus, while relatively few
studies have been conducted on the molecular epidemi-
ology of HAdV and classic HAstV in outpatient [14, 27—
29]. Therefore, we sought to investigate the detection
rate, viral co-infection, seasonal distribution, age distri-
bution, and genetic diversity of HAdV and classic HAstV
infections in children with acute diarrhea in Shanghai
from 2017 to 2018.

Materials and methods
Study design
From 2017 to 2018, a total of 804 stool specimens were
collected from children <5years who were diagnosed
with acute diarrhea and admitted to the outpatient de-
partment of the Children’s Hospital of Fudan University,
Shanghai, China. All of the enrolled specimens were
routinely collected and stored at — 70 °C prior to investi-
gation. The definition of acute diarrhea was three or
more loose, watery, thin stools with a paste-like texture,
or the presence of mucous stools within 24 h, possibly
accompanied by vomiting, abdominal pain, fever, and
nausea. This definition excluded the presence of pus or
blood regardless of the presence of fever [14]. Demo-
graphic information and clinical diagnoses were gathered
from the children’s medical histories. Informed consent
was not required from the patients because the stool
specimens were collected during the normal course of
patient care. The study proposal was approved by the In-
stitutional Review Board of the Children’s Hospital of
Fudan University. All methods were carried out in ac-
cordance with the relevant guidelines and regulations.
Viral genomic RNA and DNA were extracted from
10% fecal suspension supernatant using the TIANamp
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Virus DNA/RNA Kit (Tiangen Biotech, Beijing, China)
according to the manufacturer’s instructions. Extracted
genetic material was reverse transcribed into cDNA with
a random primer using Prime-Script™ II Reverse Tran-
scriptase (Takara, Biotechnology [Dalian] Co., Ltd.) for
detection of the Classic HAstV. A conserved region (C4)
in the HAdV hexon gene was amplified using the Ad-1
(5"-TTCCCC-ATGGCICAYAACAC-3") and Ad-2 (5'-
CCCTGGTAKC-CRATRTTGTA-3") primers [30]. The
expected size of the amplicon was 482 bp. The PCR cyc-
ling program was as follows: an initial denaturation at
94.°C for 2 min, followed by 35 cycles of 30 s at 94°C, 30
s at 55°C, and 1min at 72°C, with a final extension
cycle at 72°C for 7 min. Classic HAstV in fecal speci-
mens was detected using primers Mon269 (5 -CAAC
TCAGGAAACAGGGTGT-3") and Mon270 (5'-CTGG
CTTAACCCACATTCC-3"), which targeted the ORF2
region C [31]. The expected size of the PCR product was
449 bp. PCR amplification was performed under the fol-
lowing conditions: 94 °C for 2 min, 35 cycles of 94 °C for
30s, 55°C for 30s, and 72 °C for 1 min followed by 72 °C
for 7 min. All of the PCR products were electrophoresed
in a 2% agarose gel with ethidium bromide and a DNA
ladder of 100 bp (Takara Bio Co., Dalian, China).

All the amplicons of HAdV and classic HAstV were
purified and sequenced for phylogenetic analysis by first-
generation sequencing technologies (Sangon Biotech
[Shanghai] Co., Ltd.). Phylogenetic trees were con-
structed using the maximum likelihood method (Kimura
two parameters substitution model with 1000 bootstrap
replications for branch support) in MEGA (v6.0) soft-
ware. The nucleotide sequences of HAdV and classic
HAstV detected in this study were compared to the se-
quences of corresponding reference virus strains avail-
able in the GenBank database.

The nucleotide sequences of HAdV strains and the ac-
cession numbers used were as follows: HAdV-1: AC_
000017, AF534906; HAdV-2: J01917, AC_000007;
HAdV-3: AY599836; HAdV-4: AY487949; HAdV-5:
AY339865; HAdV-8: AB448768; HAdV-9: AJ854486;
HAdV-11: AY163756; HAdV-12: X73487; HAdV-14:
AY803294; HAdV-16: AY601636; HAdV-17: AF108105;
HAdV-21: AY601633; HAdV-22: FJ404771; HAdV-26:
EF153474; HAdV-28: FJ824826; HAdV-29: AB562587;
HAdV-31: AM749299; HAdV-34: AY737797; HAdV-35:
AY128640; HAdV-36: GQ384080; HAdV-37: AB448777;
HAdV-40: L19443; HAdV-41: DQ315364; HAdV-46:
AY875648; HAdV-48: EF153473; HAdV-49: DQ393829;
HAdV-53: AB605240; HAdV-54: NC 012959; HAdV-A:
NC_001460; HAdV-B: NC_011203; HAdV-C: NC_
001405, HAdV-D: AC_010956; HAdV-E: NC_003266;
and HAdV-F: NC_001454. The reference classic HAstV
strains and accession numbers used were as follows:
HAstV-1: L23513, Z25771; HAstV-2: L13745; HAstV-3:
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AFl41381, L38505; HAstV-4: AY720891, L38506;
HAstV-5: DQO028633, U15136; HAStV-6: L38507,
746658; HAstV-7: L38508, Y08632; HAstV-8:

AF260508, Z66541.

Statistical analysis

Statistically significant differences in infection rates of
categorical variables were tested using Fisher’s exact test,
two-sided chi-square test and corrected chi-square test
in SPSS Statistics v.20.0 (IBM Corp., Armonk, NY,
USA). P-values <0.05 were considered as statistically
significant.

Results

Prevalence of HAdV and classic HAstV infections

During the study period, a total of 804 stool samples
from children with acute diarrhea were enrolled in our
study. Among them, 497 were boys and 307 were girls,
and all of the children had been diagnosed with acute
diarrhea at the Children’s Hospital of Fudan University
in Shanghai following attendance as outpatients.

Among these 804 fecal samples, 8.58% (69/804) were
infected with HAdV or classic HAstV, and five patients
were co-infected with two viruses (Table S1 and Table
S2). The overall detection rates of HAdV and classic
HAstV were 3.47% (28/804) and 5.22% (42/804), respect-
ively. The frequency of HAdV in boys and girls was
3.22% (16/497) and 3.91% (12/307), respectively (P =
0.604). The prevalence of classic HAstV in boys and girls
was 5.84% (29/497) and 4.23% (13/307), respectively
(P =0.275). The prevalence of HAdV in 2017 and 2018
was 2.84% (12/423) and 4.20% (16/381), respectively
(P=0.293). The annual detection rates of classic HAstV
varied significantly according to the year as follows:
2.84% (12/423) in 2017, 7.87% (30/381) in 2018 (P =
0.001).

Seasonal and age distribution of HAdV- and classic
HAstV-infected children

The seasonal distribution of HAdV peaked in the June
of both 2017 (18.75%, 6/32) and 2018 (15.38%, 4/26).
During the study period, HAdV was detected in 13 of
the total 24 months (Fig. 1). The peak of classic HAstV
was December 2017 (11.76%, 4/34) and November 2018
(33.33%, 10/30). Classic HAstV was not detected in 10
of the total 24 months (Fig. 1).

Infections of HAdV and classic HAstV were found in
all age groups. Approximately 82.14% (23/28) of HAdV-
infected cases and over half of classic HAstV-infected
children (66.67%, 28/42) were found in children <36
months. The group of children between 37 and 48
months old had the highest prevalence of HAdV infec-
tions (13.33%, 6/45) and HAstV infections (5.17%, 3/55)
(Fig. 2).
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Genotypes of HAdV and classic HAstV infections
During the course of the study period, a total of 28 and
42 nucleotide sequences of HAdV and classic HAstV
were obtained, respectively. The phylogenetic trees of
nucleotide sequences of the HAdV and classic HAstV
isolates were constructed in comparison to the reference
strains.

According to the phylogenetic tree analysis conducted
based on a partial genomic region of hexon, four

subgroups of HAdV (A, B, C, and F) were detected, and
seven different genotypes (HAdV-A31, -B3, -C1, -C2,
-C5, -F40 and -F41) were identified. Subgroup F, classi-
fied as enteric HAdV, had the highest constituent ratio
at 64.29% (18/28), followed by non-enteric HAdV of
subgroup C (21.43%, 6/28) and subgroup B (10.71%, 3/
28). Of the seven genotypes, HAdV-F41 (60.71%, 17/28)
was the dominant genotype, followed by HAdV-C2
(14.29%, 4/28) and HAdV-B3 (10.71%, 3/28). HAdV-F41
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was the most common genotype at 83.33% (10/12) and
43.75% (7/16) in 2017 and 2018, respectively. The sec-
ond most prevalent genotype varied from 2017 to 2018.
HAdV-C2 (16.67%, 2/12) was the second most prevalent
genotype in 2017, while HAdV-B3 (18.75%, 3/16) was
the most prevalent in 2018. Of note, only two genotypes
(HAdV-C2 and HAdV-F41) were identified in 2017,
while all the seven HAdV genotypes were detected in
2018 (Fig. 3).

Based on the ORF2 region C of classic HAstV, two dif-
ferent genotypes of classic HAstV (HAstV-1 and
HAstV-5) were identified in 42 samples during the study
period. HAstV-1 (95.24%, 40/42) was the predominant
genotype in this study and was the only genotype de-
tected in 2017. In addition to HAstV-1 (93.33%, 28/30),
HAstV-5 (6.67%, 2/30) was also identified in 2018
(Fig. 4).

Clinical features of children infected with HAdV and
classic HAstV

The most common clinical symptom of HAdV infected
patients was diarrhea (100.0%, 28/28), followed by
vomiting (35.7%%, 10/28), fever (25.0%, 7/28) and ab-
dominal pain (3.6%, 1/28). The common clinical symp-
toms of classic HAstV infected patients were diarrhea
(100.0%, 42/42), fever (26.2%, 11/42), vomiting (23.8%,
10/42) and abdominal pain (7.1%, 3/42) (Table 1). The
difference between infected and uninfected classic
HAstV group (P=0.032) was statistically significant
when the clinical symptoms of diarrhea and abdominal
pain diarrhea occurred at the same time in children
(Table 1). No significant differences were observed in
clinical features among children with acute diarrhea
under other infection circumstances (Tables 1 and 2, Ta-
bles S1 and Table S2).

Discussion

Although HAdV and classic HAstV generally cause a
self-limiting short-term watery diarrhea, they are fre-
quent causes of acute diarrhea in children <5 years of
age [3, 20]. Real-time monitoring of HAdV and classic
HAstV can assist with monitoring their prevalence in
children with acute gastroenteritis and, as a result, could
play a guiding role in the prevention of major epidemics
in Shanghai.

The overall stool positivity rate for HAdV infection in
the present study was 3.47%, which is similar to that
previously reported in Brazil (3.9%), Bangladesh (4.82%),
and in our previous study (5.2%), but is much lower than
that reported in Northwest Ethiopia (32.0%) and Albania
(23.2%) [18, 24, 32-34]. According to our continuous
monitoring data, the detection rate of HAdV in children
with acute diarrheas was relatively stable in Shanghai
from 2010 to 2018 [14]. In addition to the data from our
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previous study from 2010 to 2011 (1.9%), the detection
rate of classic HAstV (5.22%) in Shanghai was also lower
than the average global positive rate of 11.0% [14, 20].
This frequency is similar to that observed in other stud-
ies from Thailand (2.6%), Asian Russia (2.8%), Brazil
(3.9%), Lebanon (5.5%), and Germany (5.0%) [35-39].
However, the detectable rate of classic HAstV in 2018
(7.87%) was significantly higher than the detection rate
in 2017 (2.84%) in the current study, and long-term
monitoring is needed to determine the reason for this
increase. Furthermore, sex was not found to play a role
in HAdV and classic HAstV infections in our study,
which is consistent with the findings of studies in
Tanzania and Northwest Ethiopia [24, 40].

Although only a small number of positive samples of
HAdV and classic HAstV were reported in this study,
data on the seasonality of infection with these two vi-
ruses were also analyzed. As a result, we found that
HAdV and classic HAstV infections had a tendency to
occur in oscillatory fluctuations. The highest rates of
HAGAV infection were observed in July of both 2017 and
2018, which was similar to the rates observed in Tianjin
from 2008 to 2009, and Thailand from 2011 to 2017 [8,
41]. However, in our previous study on patients with
acute diarrhea from 2006 to 2011, HAdV infection was
more frequent during the winter months [27]. Moreover,
no seasonal pattern of HAdV infection was observed in
our previous study on outpatients from 2012 to 2016
[36]. Taken together, these data indicate that the sea-
sonal pattern of HAdV infection is consistent in
Shanghai. A longer time-series analysis is needed to
describe the discrepancies in HAdV prevalence drawn
from the acquired data of inpatients and outpatients
<5years of age. The same lack of seasonal pattern
was found in Thailand and India [8, 42]. Similar to
several other studies conducted in Germany, Spain,
Northern Italy, and our previous study, classic HAstV
infection was common during the cold-weather period
in Shanghai [14, 26, 39, 43].

According to our data, higher HAdV (82.14%, 23/28)
and classic HAstV (66.67%, 28/42) positive component
ratios were identified in children <3 years, which is in
line with the findings of other studies [19, 27, 32]. In this
study, HAdV (13.33%, 6/45) and classic HAstV (6.67%,
3/42) infection were most commonly detected in chil-
dren 37-48 months old. This finding suggests that herd
immunity to HAdV and classic HAstV may develop
gradually in children >4 years old in Shanghai. However,
the neutralizing antibody production, duration of herd
immunity, and the epidemiological pattern to HAdV and
classical HAstV remain to be determined.

Molecular characterization of HAdV through phylo-
genetic analysis revealed genetic diversity in the samples
analyzed in this study. A total of seven HAdV genotypes,



Lu et al. BMC Infectious Diseases

(2021) 21:713

Page 6 of 10

97

2017-A331

2017-A357

2018-A369

2018-A118

2018-A163

2017-A187

2017-A189

2017-A191

2017-A192
95[2018-a98
—12018-A368

2017-A218

A HAdV-41(DQ315364)
2018-A322

98| llz017-A165

2018-A166

2017-A209

2017-A210

2018-A255

A HAdV-40(L19443)
A HAdV-F(NC_001454)
99, A HAdV-31(AM749199)

=]
w

HAdV-41

99 HAdV-40

9

HAdV-31

2
9
9 HAdV-21(AY601633)
A\ HAdV-50(AY737798)

93| 2018-A341
95 [12018-A365
96|  99-|- AHAdV-3(AY599836) | HAdV-3
A HAdV-B1(NC_011203)

2018-A173

] A HAdV-14(AY803294)
A HAdV-11(AY163756)
99|| A HAdV-35(AY128640)

A HAdV-16(AY601636)

A HAAV-34(AY737797)
97, /A HAdV-1(AC_000017)
9611 A HAdV-1(AF534906) | HAdV-1
2018-A3
99, A HAdV-5(AY339865)
99 2018-A275
2017-A238
2018-A35
99 2018-A174
82 A HAdV-2(AC_000007) | HAdV-2
A HAdV-2(J01917)
2017-A116
A HAdV-C(NC_001405)
A\ HAdV-53(AB605240)
A HAdV-54(NC_012959)
A HAdV-8(AB448768)
A HAdV-29(AB562587)
A\ HAdV-17(AF108105)
A HAAV-26(EF153474)
A\ HAdV-49(DQ393829)
A HAdV-22(FJ404771)
A HAdV-28(F]824826)
A HAdV-36(GQ384080)
/A HAdV-48(EF153473)
A HAdV-37(AB448777)
A HAdV-19(AB448774)
A HAdV-46(AY875648)
A\ HAdV-9(A]854486)
/A HAdV-D(NC_010956)

2018-A279
99 A HAdV-12(X73487)
99! A HAQV-A(NC_001460)
9,A

HAdV-5

99
I A\ HAdV-4(AY487949)
A\ HAAV-E(NC_003266)

Fig. 3 Phylogenetic analysis of partial hexon gene sequences of HAdV detected in children. AReference strains.z Fowl adenovirus (KF606576)

—
0.05

M Fowl adenovirus (KF601576)




Lu et al. BMC Infectious Diseases

(2021) 21:713

Page 7 of 10

99

2017-s111
;I_—l- 2017-559
92 12017-5156

A\ HAstV-6(L38507)
99 A HAstV-6(Z46658)

98, A HAstV-3(AF141381)
I—AHAstV-S(L38505)

2017-S280
2017-S413
2018-S375
2018-S371
2018-S356
2018-S342
2018-S338
2018-S329
2018-S328
2018-S317
2018-S313
2018-S309
2018-S299
2018-S179
2018-S178
2018-S77

2017-S381
2017-S141
2017-S416
2017-S417
2017-S271

2017-S400

2018-S29

2018-S93

2018-S95

92—2018-5180
2018-S327
2018-S6
2018-S322

-2018-S361
2018-S339
2018-S340
2018-S360

- 2018-538

2017-S134
2018-S330
g2 — 2018-S331

A\ HAstV-1(Z25771)
A\ HAstV-1(L23513)

HAstV-1

81

926 r A\ HAstV-4(AY720891)

95 A\ HAstV-2(L13745)

A\ HAstV-8(AF260508)
A\ HAstV-8(Z66541)
A\ HAstV-2(L13745)
100, A HAstV-7(L38508)
1 A HAstV-7(Y08632)
98,2018-S96

98

2018-597
A\ HAstV-5(DQ028633)
A\ HAstV-5(U15136)

HAstV-5
99

3 (NC_025379)

—
0.05

Fig. 4 Phylogenetic analysis of partial ORF2 gene sequences of classic HAstV detected in children A: Reference strains.: Mamastrovirus
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Table 1 Clinical symptoms of diarrhea children infected with and without HAdV or classic HAstV
Clinical symptoms HAdV, n (%) classic HAstV, n(%)

Positive Negative Positive Negative
Diarrhea only 13 (46.4) 486 (62.6) 20 (47.6) 474 (62.2)
Diarrhea and vomiting 7 (25.0) 114 (14.7) 8 (19.1) 120 (15.8)
Diarrhea and fever 4(14.3) 100 (12.9) 9(214) 104 (13.6)
Diarrhea and abdominal pain 1(3.6) 16 (2.0) 3(7.1) 11 (1.4)°
Diarrhea, vomiting and fever 3(10.7) 54 (7.0) 2 (48) 48 (6.3)
Diarrhea, vomiting and abdominal pain 0(0) 2(03) 0 1(0.1)
Diarrhea, fever and abdominal pain 0 (0) 1(0.1) 0 2 (0.3)
Diarrhea, vomiting, fever and abdominal pain 0(0) 3(04) 0 2 (0.3)
Total 28 (100.0) 776 (100.0) 42 (100.0) 762 (100.0)

2 The difference between infected and uninfected classic HAstV group was statistically significant when the clinical symptoms of diarrhea and abdominal pain

occurred at the same time (P=0.032)

including five non-enteric HAdV genotypes, were found
in children with acute diarrhea from 2017 to 2018. Our
survey of HAdV genotypes in children with acute diar-
rhea indicated that enteric HAdV, including HAdV-F40
and HAdV-F41, accounted for 64.29% (18/28), and can
therefore be considered the most prevalent pathogens
associated with acute diarrhea in Shanghai. However,
HAdV-F40 was only found in one child; this finding co-
incides with those from our previous studies, and those
in Bangladesh and Japan [14, 32, 44]. One reason for the
predominance of HAdV-F41 over HAdV-F40 is anti-
genic drift of HAdV-F41. Meanwhile, some studies have
discovered that GTC1 and GTC2 subdivisions trigged by
the build-up of amino acid mutations in the HVRs
(hexon hypervariable regions) of hexon may allow
HAdV-F41 to escape from the host immune response,
leading to increased HAdV-F41 infection [45-47].

The results of this study suggest that non-enteric
HAAJV, including HAdV-A31, -B3, -C1, -C2, and -C5,
play important roles in causing acute diarrhea in chil-
dren, although they primarily caused conjunctiva and
upper and lower respiratory tract infections [13]. Inter-
estingly, non-enteric HAdV-C2 and HAdV-B3 infections
unexpectedly exceeded that of HAdV-F40 and became
the second and third leading genotype in children with
acute diarrhea, respectively. In addition, in contrast to

our previous studies from 2012 to 2016, the detection
rate of HAdV-C2 exceeded that of HAdV-A31 and was
therefore found to be the second most prevalent geno-
type from 2017 to 2018 [39]. Taken together, these re-
sults suggest that the genotypes of non-enteric HAdV in
children with acute diarrhea undergo dynamic changes
in Shanghai, demonstrating the importance of continu-
ous surveillance of HAdV in this patient group.

HAstV-1 is the most prevalent classic HAstV genotype
detected worldwide, whereas HAstV-2—HAstV-8 are less
prevalent [7, 23]. According to the phylogenetic tree
analysis of classic HAstV, only two genotypes, including
HAstV-1 and HAstV-5, were identified in Shanghai from
2017 to 2018. HAstV-1 (95.24%) was the predominant
genotype detected in children with diarrhea, which is
consistent with the findings of our previous study from
2008 to 2011 as well as with other reports conducted in
Japan, Switzerland, Asian Russia, Korea, Germany, and
Brazil [36, 37, 39, 48—51]. Moreover, HAstV-5 was only
detected in two samples in early 2018; to the best of our
knowledge, this study is the first to report the appear-
ance of HAstV-5 in Shanghai. Nevertheless, long-term
monitoring data on HAstV-5 are needed to derive the
epidemic characteristics of this genotype.

Typical clinical symptoms of these children with acute
diarrhea were diarrhea, vomiting, fever, and abdominal

Table 2 Clinical features observed among diarrheic children infected with HAdV and classic HAstV

Clinical symptoms Enteric HAdV,

Non-enteric HAdV, Classic HAstV,

n (%) n (%) n (%)
Diarrhea only 10 (55.5) 3 (30.0) 20 (47.6)
Diarrhea and vomiting 4(22.2) 3(30.0) 8 (19.1)
Diarrhea and fever 2 (11.1) 2 (20.0) 9(214)
Diarrhea and abdominal pain 1 (5.6) 0 (0) 3(7.1)
Diarrhea, vomiting and fever 1(5.6) 2 (20.0) 2 (48
Total 18 (100) 10 (100) 42 (100)
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pain. This finding was in agreement with the previous
reports of viruses infected patients [32, 50]. Moreover,
the results of this study suggest that children infected
with classic HAstV would be more likely to experience

abdominal pain compared with HAstV negative
children.
Conclusions

In the current study, we clarified the epidemiological
role of HAdV and classic HAstV in children <5 years
with acute diarrhea in Shanghai from 2017 to 2018.
HAdV-41 has a significant involvement in the etiology
of acute diarrhea in children <5 years; however, the role
of non-enteric HAdV in children cannot be ignored. We
also found that HAstV-1 was the most predominant
genotype in Shanghai. These findings enhance our
knowledge of the significance of HAdV and classic
HAstV infections in children.
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