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Abstract

Background: Although by late February 2020 the COVID-19 epidemic was effectively controlled in Wuhan, China,
estimating the effects of interventions, such as transportation restrictions and quarantine measures, on the early
COVID-19 transmission dynamics in Wuhan is critical for guiding future virus containment strategies. Since the exact
number of infected cases is unknown, the number of documented cases was used by many disease transmission
models to infer epidemiological parameters. This means that it was possible to produce biased estimates of
epidemiological parameters and hence of the effects of intervention measures, because the percentage of all cases
that were documented changed during the first 2 months of the epidemic, as a consequence of a gradually
improving diagnostic capability.

Methods: To overcome these limitations, we constructed a stochastic susceptible-exposed-infected-quarantined-
recovered (SEIQR) model, accounting for intervention measures and temporal changes in the proportion of new
documented infections out of total new infections, to characterize the transmission dynamics of COVID-19 in
Wuhan across different stages of the outbreak. Pre-symptomatic transmission was taken into account in our model,
and all epidemiological parameters were estimated using the Particle Markov-chain Monte Carlo (PMCMC) method.

Results: Our model captured the local Wuhan epidemic pattern as two-peak transmission dynamics, with one peak
on February 4 and the other on February 12, 2020. The impact of intervention measures determined the timing of
the first peak, leading to an 86% drop in the Re from 3.23 (95% CI, 2.22 to 4.20) to 0.45 (95% CI, 0.20 to 0.69).
The improved diagnostic capability led to the second peak and a higher proportion of documented infections. Our
estimated proportion of new documented infections out of the total new infections increased from 11% (95% CI 1–
43%) to 28% (95% CI 4–62%) after January 26 when more detection kits were released. After the introduction of a
new diagnostic criterion (case definition) on February 12, a higher proportion of daily infected cases were
documented (49% (95% CI 7–79%)).

Conclusions: Transportation restrictions and quarantine measures together in Wuhan were able to contain local
epidemic growth.
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Introduction
Coronavirus disease 2019 (COVID-19), an acute respira-
tory infection originally identified in the city of Wuhan
in Hubei Province, China, has spread worldwide in 2020
[1, 2]. Estimating the effects of intervention measures is
still one of the major scientific goals in order to identify
prevention measures that are effective in different coun-
tries around the world [3]. The precise estimation of the
effective reproduction number (Re), the expected num-
ber of new infections caused by an infectious individual,
is critical for the identification of appropriate interven-
tion measures to contain the outbreak [1, 4–8]. Al-
though many recent studies have evaluated how
intervention measures implemented in Wuhan reduced
disease spread to regions outside Wuhan [6, 9–12], the
investigation of the contribution of interventions within
Wuhan, the epidemic source region itself, has received
little attention [13, 14], possibly because an irregular pat-
tern of transmission dynamics during early February
hinders the model fitting processes, making the precise
estimation of the parameters difficult.
To control the virus spread during the early outbreak

stage, the Chinese government implemented strict travel
restrictions on January 23, 2020 in Wuhan [15]. The first
epidemic peak occurred 12 days after the restrictions were
implemented. Soon afterwards, the number of new daily
documented cases started to fluctuate for about 2 weeks
around this peak value, followed by another peak with
an extremely high number of cases, and it then reduced to
very low levels (Figure S1). The transmission dynamics
with such an irregular and unusual pattern can affect the
estimation of the effects of intervention measures. The
high number of documented cases after the introduction

of interventions was generally hypothesized to be mainly
caused by improved diagnostic capability [16], leading to
more detected cases rather than caused by the intrinsic
growth of the epidemic. However, most studies have not
considered the changes in diagnostic capability over time,
which can affect the number of documented infections
and, ultimately, the estimation of Re.
Accounting for temporal changes in COVID-19 diag-

nostic capability is critical for characterizing transmissibil-
ity and understanding the pattern of the local Wuhan
epidemic. Recent studies have shown that the total poten-
tial number of cases has been significantly underestimated,
with more than 80% of all infections undocumented dur-
ing the initial period following the identification of SARS-
CoV-2 as the causative agent [17]. While the number of
total new infections is driven by the epidemic growth,
after the introduction of new commercial kits [18] and
introduction of more sensitive diagnostic criteria [16]
(Fig. 1), diagnostic capacity in Wuhan improved, resulting
in a higher proportion of total new infections been docu-
mented. Therefore, it is important to consider the im-
provements in diagnostic capacity over time when using
the documented data to construct transmission models
for COVID-19 in Wuhan.
A particularly important challenge is to understand

the proportion of transmission that occurs prior to the
onset of illness. During the early outbreak, several stud-
ies have described the pre-symptomatic transmission of
SARS-CoV-2, including a 20-year-old woman from Wu-
han believed to have passed on the infection to five of
her family members [19] and a Chinese individual be-
lieved to have infected her German business partner
[20], both in the absence of symptoms. The existence of

Fig. 1 The daily number of new COVID-19 documented (reported) cases by date and the timeline of improved diagnostic capability and
transportation restrictions implemented in Wuhan, China. Wuhan transportation restrictions were implemented on January 23 [15]; New
commercial kits were approved by the State Food and Drug Administration (SFDA) on January 26 [18]; Updated diagnostic criteria, i.e. COVID-19
case confirmation should rely on both clinical diagnosis and laboratory diagnosis, was introduced on February 12 [16]. A break was made in the
y-axis, and the narrow grey horizontal bar indicates where the break was set
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pre-symptomatic transmission indicates that COVID-19
infected individuals can be infectious during the incuba-
tion period. However, previous classical susceptible-
exposed-infected-recovered (SEIR) models assume weak
or no infectiousness during the incubation period [14,
21], potentially resulting in an underestimation of the in-
fectiousness of COVID-19 cases.
In this study, in order to overcome the difficulties re-

lated to describing irregular fluctuations in the transmis-
sion dynamics and the limitation of the simple SEIR
model for dealing with such data, a stochastic
susceptible-exposed-infected-quarantined-recovered
(SEIQR) model was developed to describe the Wuhan
COVID-19 transmission pattern after the initial out-
break stage. This model extends the classic SEIR model
by including pre-symptomatic transmission and quaran-
tined status and allows the effects of transportation re-
strictions and quarantine measures on virus
transmission patterns to be estimated while accounting
for improvements in the diagnostic capacity over time.
After considering varying diagnostic capabilities, we will
show that this model can capture the transmission dy-
namics well and can estimate the reduction in Re

precisely.

Methods
Data collection
The daily number of new documented COVID-19 con-
firmed cases from January 11 to March 10 in Wuhan,
Hubei province, China, by reported date, were collected
from the Wuhan Municipal Health Commission [22]
and the National Health Commission of the People’s Re-
public of China [23]. During this period, asymptomatic

cases were not classified as confirmed cases in Wuhan
[24, 25], and only confirmed cases were reported in the
commission’s official daily reports.

Description of the SEIQR epidemic model
An SEIQR model was developed to estimate the effect of
intervention measures on COVID-19 transmission dy-
namics in the Wuhan population (Fig. 2). In our model,
S, E, I, Q and R represent the number of individuals in
susceptible, exposed, infectious (after incubation time),
quarantined, and recovered statuses, with the total popu-
lation size N = S + E + I + Q + R assumed to be 11 million
(the permanent population in Wuhan [26]). Here, we de-
fined susceptible individuals change to exposed individ-
uals after they have had effective contact with the virus.
Exposed individuals were further divided into two
groups: E1, exposed individuals at the latent period who
are not able to transmit the disease; E2, exposed individ-
uals not at the latent period who are at a pre-
symptomatic stage (referred to pre-symptomatically in-
fectious individuals). The proportions of E1 and E2 out
of total exposed individuals were determined using the
proportion of the time span of latent period and pre-
symptomatic transmission period within the incubation
period. The SEIQR equations were derived as follows:

St ¼ St−1−ΔE;t

Et ¼ Et−1 þ ΔE;t−ΔI;t

It ¼ It−1 þ ΔI;t−ΔR;t−ΔQ;t

Qt ¼ Qt−1 þ ΔQ;t

Rt ¼ Rt−1 þ ΔR;t

ð1Þ

Fig. 2 SEIQR model schema. The population is divided into five compartments: S (susceptible), E (exposed), I (infectious), Q (quarantined), and R
(recovered). E2 is the number of exposed individuals after latent period who are pre-symptomatically infectious, β is the transmission rate, σ is the
incubation rate, q is the quarantine rate, γ is the recovery rate. A fraction of newly symptomatic infections seek for medical care and are
eventually documented by hospitals, where p(m| i) is the probability of an infection develops symptoms and seeks medical care, p(hosp _ diag|
m)t represents the probability that a symptomatic infectious outpatient is diagnosed as COVID-19 case by the hospital
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ΔE, t is defined as the number of newly exposed indi-
viduals before symptom onset, during a time interval
from t − 1 to t, ΔI, t is the number of new infections after
incubation time (including both symptomatically and
asymptomatically infectious cases), ΔQ, t is the number
of newly quarantined cases, and ΔR, t is the number of
newly recovered individuals. We assumed ΔE, t, ΔI, t, ΔQ,

t, and ΔR, t follow Poisson distributions:

ΔE;t � Poisson
βt−1 E2t−1 þ It−1½ �St−1

N

� �

ΔI;t � Poisson σ � Et−1ð Þ
ΔQ;t � Poisson q� It−1ð Þ
ΔR;t � Poisson γ� It−1ð Þ

ð2Þ

where E2t − 1 is the number of pre-symptomatically in-
fectious individuals (E2) at time t − 1, assumed deter-
mined as E2t−1 ¼ ð1σ−η1

σ
ÞEt−1 , σ is the rate at which some

exposed individuals become symptomatically infectious
cases (1/σ is the incubation period), η is the latent
period, q is the quarantine rate (1/q the time between
symptom onset and quarantine start), γ is the recovery
rate, expressed by γ = 1/(τ − 1/σ), and τ is the generation
time. Here we assumed τ was fixed to be 10 days consid-
ering the period from being infected to recovered was
generally longer than the observed serial interval (e.g.
7.5 days) [1] and the infectious period was estimated to
be around 10 days by a virology study [27]. Using a con-
stant value of τ can reduce the model uncertainty. βt is
the transmission rate on day t. In this model, βt is as-
sumed to be modulated by the Wuhan transportation re-
striction policy, represented as an exponential
relationship with a lag effect:

βtþlag1 ¼ e α�poltþ log β0ð Þð Þ ð3Þ

where polt is an indicator variable for the daily transpor-
tation restriction policy, with polt = 0 if there is no trans-
portation restriction at time t (i.e., before January 23)
[15] and polt = 1 otherwise. α is the transportation re-
striction effect coefficient, β0 is the basic transmission
rate without transportation restrictions, and lag1 indi-
cates the lag time of the transportation restrictions effect
on the virus transmission rate assumed to be 6 days [13].
Thus, βt has a constant value throughout the period be-
fore the transportation restriction worked and change to
a different constant value after then.

Mapping SEIQR model to observed hospital document
cases
Model estimates of new infections (ΔI, t, including both
symptomatically and asymptomatically infectious cases)
can not be compared with observed hospital docu-
mented cases directly. This is because documented data
only captures COVID-19 cases who seek hospital care

and are successfully diagnosed, which will only be a pro-
portion of the total number of new infections in the
population estimated in the model. To address this dis-
cordance, we introduced an observation model to link
the SEIQR model simulated new infections to the obser-
vations. The daily number of hospital documented cases,
(hosp _ document)t + lag2, was assumed to follow a nor-
mal distribution with the mean defined as the number of
new infections ΔI, t that were reported (documented)
with a delay of lag2 (days). Here, lag2 was a parameter,
which was set as 6 (days) [13]:

hosp documentð Þtþlag2 � Normal ΔI;t � p mjið Þ � p hosp diagjmð Þtþlag2; ϵ
2

� �

ð4Þ

where p(m| i), the probability of an infection develops
symptoms and seeks medical care, was assumed to be
fixed at 0.8 according to the high motivation of care-
seeking behavior in Wuhan [28]. Hospital diagnostic
rate, p(hosp _ diag| m)t + lag2, represents the probability
that a symptomatic infectious outpatient is diagnosed as
COVID-19 case by the hospital with a delay of lag2 days.
ϵ2 is the distribution variance, and ϵ was manully as-
sumed to be 600 (around 30% of the number of daily
new documented cases at the first peak). We also de-
fined (prop _ doc)t, the proportion of documented cases
out of total new infections, could be calculated as (prop
_ doc)t = p(m| i) × p(hosp _ diag| m)t.
Given that the diagnostic capability progressed over

time, hospital diagnostic rate p(hosp _ diag| m)t was as-
sumed to have three different values during each of the
three periods: p1(hosp _ diag| m) is the rate for the
period prior to January 27 when test kits were limited,
p2(hosp _ diag| m) is the rate for the period between
January 27 and Feburary 11 when test kits were suffi-
cient but diagnostic criteria was biased without incorp-
orating clinical diagnosis [18], and p3(hosp _ diag| m) is
the rate for the period after February 12 when test kits
were sufficient and diagnostic criteria became more sen-
sitive based on both clinical diagnosis and laboratory
diagnosis [16]. The values of p1(hosp _ diag| m), p2(hosp
_ diag| m) and p3(hosp _ diag| m) were estimated after
fitting the model to the number of daily hospital docu-
mented cases. Hospital documented cases on the specific
days of January 27, February 12, and February 13, the
dates of change in testing capacity [16, 18] (Figure S1),
are likely to contain retrospectively documented cases
due to the transition to new diagnostic criteria or test
kits [29]. Therefore, we removed the original values of
these three data and re-filled them by using “na.spline”
function in R. That is, the smoothed values of these
three dates and the original data of other dates were
used during the model fitting process.
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Effective reproductive number Re
After obtaining the posterior distributions of model pa-
rameters βt, σ, q, γ and model status St, the effective re-
productive number Re before and after the intervention
policy was implemented can be calculated using the
next-generation matrix (NGM) approach. Following
methods previously described by Diekmann et al. [30],
the transmission matrices T and Σ can be calculated.
Briefly, each element in T represents the average num-
ber of newly infected cases in the exposed compartment
(E) per unit time due to transmission via a single in-
fected individual in the exposed (E) or infectious group

(I), calculated as βt½ð
1
σ−η
1
σ
Þ�St or βtSt. Σ represents the tran-

sitions between model states. Re could be calculated as
the first eigenvector of the matrix NGMt:

NGMt ¼ −1ð Þ
βt

1
σ
−η

1
σ

0
B@

1
CA

2
64

3
75St

N
βtSt
N

0 0

2
666664

3
777775

−σ 0
σ − γþ qð Þ

� �−1
0
BBBBB@

1
CCCCCA

ð5Þ

where βt, St, σ, q, γ, and N are defined as described
above.
Re without the effect of quarantine was calculated as

follows: first, we estimated the values of all parameters
with quarantine measures through the model fitting
process. Second, we simulated the epidemiological
curves by setting the quarantine rate as zero (q =0, a
scenario without quarantine measures) but keep viral
infection-related parameters (σ, η, γ, βt) the same as
those were estimated. Finally, we calculated this Re

through the Eq. (5) using the simulated epidemiological
curve (St) and the corresponding parameters above
mentioned.

Model-filters and validations
Since the time-varied true number of individuals in S, E,
I, Q and R statuses were not directly observable, we used
Particle Markov-chain Monte Carlo (PMCMC) method
to handle such hidden variables by simultaneously esti-
mating both the parameters and the hidden variables
[31]. Our framework of PMCMC contains two parts: the
SEIQR transmission model that generates the transmis-
sion dynamics and the observation model that maps
SEIQR model to observed hospital document cases. All
posterior distributions for the epidemiological hidden
variables and parameters were obtained using the
PMCMC method, implemented in the Nimble R library
[32].
The priors for the parameters were drawn from the

following distributions: for the incubation period, 1/
σ~U(1, 10); for the latent period, η~U(1, 7); 1/q~U(1,
10), for the time between symptom onset and quarantine
start; β0~U(0, 1) for the basic transmission rate; and

α~N(0, 1), for transportation control coefficient. In the
observation model, the priors for time progressed hos-
pital diagnostic rates were set as uniform distribution:
p1(hosp _ diag| m) /p2(hosp _ diag| m) ~U(0, 1), p2(hosp
_ diag| m) /p3(hosp _ diag| m) ~U(0, 1), p3(hosp _ diag|
m)~U(0, 1).
To assess convergence, three independent chains of

the SMC algorithm sets were conducted using 100,000
iterations of 1000 particle samples in each chain. We
calculated the effective sample size (ESS) and Gelman-
Rubin convergence diagnostic statistics across the three
chains.

Results
Reconstructing disease dynamics
The daily number of documented COVID-19 cases in
Wuhan, increased exponentially up until the first epi-
demic peak occurring on February 4, and started to fluc-
tuate around the first peak value for about 2 weeks.
Note that the values of the highest peak occurring
around the end of the second week in two consecutive
days in February were ignored in our study because this
peak was primarily caused by the retrospectively docu-
mented cases under the new diagnostic criteria, whose
actual symptom onset date was diversely distributed and
can not be traced by our model (Figure S1). The irregu-
lar fluctuations can be explained by the effects of inter-
ventions and the improved diagnostic capability: the
interventions determined the timing of the first peak
and may cause a decline pattern afterward; the improved
diagnostic capability led to an increase in the number of
the documented cases. Together, a high number of cases
can be produced for about 2 weeks. Our stochastic SEIQ
R model reproduced this irregular pattern by a two-peak
dynamic with the first peak occurring on February 4 and
the second peak occurring shortly on February 12 (Fig.
3). Our estimated times and intensities coincide with the
observed epidemic pattern. The estimated incubation
period was 5.68 days (95% CI 2.46–8.03), and the esti-
mated latent time was 2.82 days (95% CI 1.10–5.40)
(Table 1).

Effects of intervention measures
Both transportation restrictions and quarantine mea-
sures had significant impacts on the effective reproduct-
ive number Re. The initial value of Re was estimated to
be 3.23 (95% CI 2.22–4.20) from January 5 to January 28
(Fig. 4), but dropped by 86% to 0.45 (95% CI 0.20–0.69)
from January 29 to March 4 after the implementation of
transportation restrictions, calculated based on the esti-
mated values of transmission rate βt (Figure S2). The es-
timated time delay to the start of quarantine after
symptom onset was 5.44 days (95% CI 1.99–9.76) (Table
1). For limiting the outbreak growth, quarantine
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measures were important but not essential. Without
quarantine measures, the initial value of Re would in-
crease to 4.54 (95% CI 3.65–6.79) before transporta-
tion restrictions had an impact, and would become
0.60 (95% CI 0.23–1.27) after then (Fig. 4). Although
Re eventually became less than one, the high initial
value of Re would have caused a huge case burden
during the early phase of the outbreak. We further
tested how the improvements in the diagnostic cap-
acity influenced the estimation of Re: about 12–16%
overestimation of Re was found due to assuming a
fixed diagnostic capacity (Figure S3); and the model fitting
Watanabe-Akaike Information Criterion (WAIC) was in-
creased to be 899.50, comparing to 896.06 from our

model, indicating a better fit for our model taking account
of improving diagnostic capability.

Effects of detection capability
During the epidemic, the detection capability of
COVID-19 in Wuhan was improved several times
through the increased availability of test kits and the
introduction of more sensitive diagnostic criteria (Fig. 1).
These improvements in the detection capability greatly
affected the proportion of documented infections during
three periods. From January 11 to January 26, the esti-
mated proportion of documented new infections out of
total new infections was 11% (95% CI 1–43%), increasing
to 28% (95% CI 4–62%) following the increase in test kit

Fig. 3 The daily number of new documented confirmed cases by date in Wuhan, China. The red line represents model-estimated cases, grey
shadow represents the 95% prediction interval, black points represent the observed documented cases, the blue shaded background denotes
incrementally increasing proportions of new documented infections out of total new infections in the corresponding period. Daily documented
cases on January 27, February 12, and February 13, the dates of change in testing capacity, are likely to include retrospectively documented cases
due to the transition to new diagnostic criteria or test kits [16, 18, 29]. The data on these 3 days were ignored during the model fitting process. A
break was made in the y-axis, and the white horizontal bar indicates where the break was set

Table 1 Parameter estimates of the SEIQR epidemic model. The definitions of the parameters are described. The mean value and
95% credible interval (CI) of the posterior distribution of each of the parameters are included. Convergence is diagnosed to have
occurred when the value of Gelman-Rubin convergence is close to 1 or the ESS is larger than 200

Parameters Definition Mean 95% CI Gelman-Rubin convergence ESS

1/σ Incubation period (days) 5.68 (2.46, 8.03) 1.006 261.56

η Latent period (days) 2.82 (1.10, 5.40) 1.005 309.46

1/q Time between symptom onset and quarantine start (days) 5.44 (1.99, 9.76) 1.003 477.50

α Transportation restriction coefficient −1.96 (−2.90, −1.21) 1.003 411.77

β0 Basic transmission rate without transportation restrictions 0.67 (0.44, 0.97) 1.001 293.01

p1(hosp _ diag| m) Hospital diagnostic rate from Jan 11 to Jan 26 0.14 (0.01, 0.54) 1.002 396.84

p2(hosp _ diag| m) Hospital diagnostic rate from Jan 27 to Feb 11 0.35 (0.05, 0.78) 1.008 571.52

p3(hosp _ diag| m) Hospital diagnostic rate from Feb 12 to Mar 10 0.61 (0.09, 0.98) 1.004 557.22
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production on January 26. Then the proportion in-
creased further to 49% (95% CI 7–79%) after Febru-
ary 12 when more sensitive diagnostic criteria were
introduced (Fig. 5a). The estimated potential cumu-
lative number of infections is correlated with but
higher than the observed hospital documented cases
in Wuhan, and a sudden surge of hospital documented
cases on February 12 can be explained by the introduction
of the more sensitive diagnostic criteria (Fig. 5b).

Discussion
This is the first study to demonstrate the effects of interven-
tion measures on the transmission dynamics in Wuhan
while taking account of improvements in diagnostic cap-
acity over time. Our results indicated that the transporta-
tion restrictions and quarantine measures together in
Wuhan were able to contain local epidemic growth by sub-
stantially reducing Re by 86%. This proportion of the reduc-
tion in Re was exactly the same as the proportion of the

Fig. 4 Estimation of the effective reproductive number Re in Wuhan. The red point represents the estimated Re assuming quarantine measures
were not implemented, the black point represents Re when quarantine measures were assumed to be implemented, and whiskers show the 95%
credible intervals

Fig. 5 Prediction of temporal diagnostic capability and potential cumulative infections in Wuhan. a The estimated proportion of new
documented infections out of total new onset infections during different time periods with 95% credible intervals. b The red line is the predicted
potential total cumulative cases, and the red shadow area represents the 95% prediction interval; the grey bar shows the hospital documented
cumulative cases
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reduction in the average daily number of contacts per per-
son (14.6 vs. 2.0) between a baseline period (before the out-
break) and the outbreak period in another study using
contact surveys in Wuhan [33]. Since very few studies have
estimated the effects of the transportation restrictions in
Wuhan, the reduction of contact rate offers valuable infor-
mation to project the possible effects on the reproduction
number. Assuming the transmissibility was proportional to
the contact numbers, the reduction ratio of the contact
numbers will be proportional to the reduction ratio in Re.
These results confirm that measuring contact mixing is an
accurate way to estimate the impacts of intervention mea-
sures. Furthermore, the proportion of undocumented infec-
tions was estimated to be reduced during the outbreak, as a
consequence of the improvements in diagnostic capability.
These findings will help to inform further analysis aimed at
developing prevention strategies and evaluating the effects
of public health interventions.
While most studies assumed a fixed proportion of docu-

mented infections over time, the study presented here esti-
mates an initial proportion of documented infections of
11%, similar to previous predictions of 14% by Ruiyun et al.
[17], which progressively increases with the improvement
of diagnostic capability. Our results suggest that the in-
crease in the number of cases during the early outbreak
needs to be interpreted cautiously, given that the propor-
tion of documented infections is highly dependent on the
availability and use of test kits over time. As detection was
enhanced through improved clinical diagnosis [16], a sharp
rise in cumulative cases on February 12 is likely explained
by prior onset cases retrospectively documented under new
diagnostic criteria. The undocumented infections may be
largely associated with mild illness that are insufficiently
serious to seek treatment [17]. Our results show that the

estimated proportion of documented new infections out of
total new infections increased to 49% after diagnostic sensi-
tivity was increased. Besides the increased test kit produc-
tion and the more sensitive diagnostic criteria mentioned
above, there are other factors that may enhance case detec-
tion: such as extensive testing, more test equipment, and
more health workers and expertise [34]. Over the study
period, the amount of community testing was strongly
dependent on the supply of test kits [35], especially for the
time before January 26. The amount of test equipment/
health workers and expertise was gradually increased over
time, however, the related data is not available.
The estimation of Re in the study from January 5 to Janu-

ary 28 is consistent with other recent studies [36] (3.11 by
Jonathan et al. [5], 3.15 by Tian et al. [6], 1.4 to 3.9 by Li
et al. [1], see in Table 2). Furthermore, our results demon-
strate that the combination of transportation restrictions
and quarantine measures was able to reduce COVID-19
transmission. Transportation restrictions, including stop-
ping all forms of public transportation, including trains,
and air travel, sharply reduced social contacts thereby redu-
cing virus transmission rates [13, 17]. Population behavioral
responses (e.g., social distancing, contacts mixing, wearing
facemasks, etc.) were changed concurrently with the imple-
mentation of transportation measures [33, 38]. Because a
gradual increase in documented hospital cases in February
can be partly due to the increased detection capability, the
effect of intervention measures (indicated as the reduction
in Re) was estimated to be larger than previous studies that
assumed fixed detection rates over the course of the epi-
demic. For example, Re was estimated to drop by 55.3% by
Kucharski et al. [13]. Quarantine of infections was also
found to be essential in curbing the epidemic. Our model
estimated that the time between symptom onset and

Table 2 A summary of models, data descriptions, reported estimates of the basic/effective reproductive number

Ref. Model Data (study period) Basic (R0) or effective (Re) reproduction number

Li et al. [1] stochastic standard susceptible-
exposed infectious-recovered
(SEIR) model

daily onset cases in Wuhan, China (December
10–January 4, 2020)

2.2 (95% CI: 1.4–3.9)

Jonathan
et al. [5]

deterministic susceptible-
exposed infectious-recovered
(SEIR) metapopulation model

daily reported cases in Wuhan, China (January
1–January 22, 2020)

3.11 (95% CI: 2.39–4.13)

Tian et al.
[6]

deterministic susceptible-
exposed infectious-recovered
(SEIR) model

daily reported cases in 262 cities in China,
including Wuhan (December 31, 2019 -
February 19, 2020)

3.15 (95% CI: 3.04–3.26, before the implementation of
the transportation restrictions);
0.97–3.05 (after control was scaled-up from 23 January
onward)

Majumder
et al. [37]

incidence decay and
exponential adjustment (IDEA)
model

daily reported cases in Wuhan, China
(December 1, 2019 - January 26, 2020)

2.54–3.61

Kucharski
et al. [13]

meta-population stochastic
susceptible-exposed infectious-
recovered (SEIR) model

daily onset cases in Wuhan and
internationally exported cases from Wuhan,
China (December 1, 2019 - February 10, 2020)

2.35 (95% CI: 1.15–4.77, 1 week before transportation
restrictions were introduced); 1.05 (95% CI: 0.41–2.39,
1 week after transportation restrictions were
introduced)
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quarantine start was 5.44 days, similar to the estimates pre-
viously reported by Tian et al. (5.19 days) [6].
The estimated incubation period was 5.68 days which

is also consistent with other recent studies [1, 6, 39–41].
As the estimated latent period is 2.82 days, some trans-
missions may occur before the symptom onset. Finding
ways to reduce possible contact during the pre-
symptomatic transmission period may be a critical com-
ponent in containing the spread of the virus. Given the
existence of pre-symptomatic transmission, this study
supports government recommendations that people who
have had close contact with confirmed cases, regardless
of whether they show symptoms or not, need to be quar-
antined for 14 days [42].
The current study suggests that although intensive

transportation restrictions and quarantine measures
were critical in containing the COVID-19 outbreak in
Wuhan, the improvements in detection capability have
to be taken into account in order to evaluate the effect-
iveness of these intervention measures more accurately.
This will allow more meaningful evaluations of public
health control effects, which are important for mak-
ing decisions on which intervention used in Wuhan
should be replicated in other parts of the world in order
to effectively control the current pandemic.
There are two limitations to this study. First, in addition

to its effect on the infected individuals, the quarantine
intervention can result in a lower number of susceptible
individuals. Our model did not consider that because the
number of close contacts during that period is not avail-
able. Given that the daily incidence was about 200 cases
per million population and that Wuhan’s population size
is approximatly 11 million [26], the proportion of suscep-
tible individuals that were traced and quarantined each
day is relatively small if we assume each infected case con-
tacted 30 individuals. Its impact on the estimation of Re

would be therefore small. Second, in this study, we as-
sumed that the proportion of asymptomatic cases among
all cases was constant over time. It is unlikely that it will
be possible to get good estimates of the number of asymp-
tomatic cases during the outbreak. Despite these limita-
tions, we demonstrated that our methodology allowed
for improved approximation of the actual epidemic pat-
tern by taking account of changes in diagnostic capacity.

Conclusions
The combination of transportation restrictions and quar-
antine measures used in Wuhan was able to effect-
ively contain local COVID-19 epidemic spread.
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