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Abstract

Background: The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of
March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical
interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data
from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected
and total cases for the COVID-19 outbreak in Wuhan.

Methods: By taking different stages of the outbreak into account, we developed a time-dependent compartmental
model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were
parameterized by using the reported cases and following key events and escalated control strategies. Then the model
was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we
used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence
level.

Results: We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the
lockdown on Jan 23 and 67.6% (95% CI [ 0.584, 0.759]) of detectable infections occurred during this period. Based on
the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about
70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI
[ 12, 364, 23, 254]), which yields an estimate of a total of 64,454 infected cases (95% CI [ 62, 370, 73, 260]), and the overall
antibody prevalence level in the population of Wuhan was 0.745% (95% CI [ 0.693%, 0.814%]) by March 31, 2020.

Conclusions: We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of
a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all
symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process
on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide
insights for other affected countries and regions in designing control strategies and planing vaccination programs.
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Background
On December 31, 2019, a cluster of 27 cases of pneumo-
nia of unknown etiology were detected in Wuhan, Hubei
Province, China [1–5]. As all of the first set of 27 infected
patients were associated with a seafood and wild ani-
mal market and the virus was found in the market, it is
believed that the virus very likely came from wild animals
[3–5]. On January 10, 2020, the number of cases increased
to 41 with six serious cases and one disease-induced death
[3, 5–7]. Detailed clinic features of these 41 patients were
reported two weeks later [3]. The sequence of the agent’s
RNA genome was determined and it was identified as a
betacoronavirus [8]. Consequently, the virus was named
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) and the disease caused by the virus was named
Coronavirus Disease in 2019 (COVID-19) on February
11, 2020 [9]. As Wuhan is a crucial provincial, national,
and international travel hub located in Central China with
11 million residents plus 3 million nonresidents (“floating
population”) and Chunyun (Spring Festival travel sea-
son, Jan 10 to Feb 18) had already started, the virus
spread rapidly from Wuhan to all 13 prefectures in Hubei
Province as well as all other 32 provinces, autonomous
regions, municipalities, and special administrative regions
in China by mid-February [10]. The virus had also been
spread to many countries and territories and on March
11, 2020, WHO declared COVID-19 a global pandemic
[9]. By the end of August 2020, it had been reported
in 216 countries and regions worldwide with more than
25 million infected cases including more than 800,000
deaths [9].
In the early stage, local authorities in Wuhan took sev-

eral measures to combat the spread of the coronavirus,
including closing the seafoodmarket, treating the infected
individuals in a designated hospital, tracing those who had
contact with the infected patients and putting them in
quarantine or under medical observation, and so on. On
Jan 20, 2020, the National Health Commission of China
(NHCC) classified novel coronavirus infected pneumonia
as a class II infectious disease in the National Station-
ary Notifiable Communicable Diseases (NSNCD) to be
treated as a class I infectious disease in prevention and
control (Fig. 1) [11]. On Jan 23, 2020, in order to control
local outbreak and prevent further exportation to other
regions, the Wuhan Municipal authority locked down the
entire city and suspended all local (bus, ferry, subway)
and long-distance (bus, train and flight) public transporta-
tion [12]. Social distance policy (staying at home and
wearing face masks in public) was also implemented. Dur-
ing the two weeks after lockdown, the number of cases
increased significantly when Wuhan was facing a severe
shortage of medical resources, including health care work-
ers, hospital beds, personal protective equipments (PPEs),
and testing facilities. To overcome these difficulties, a

number of hospitals were turned into specialty hospi-
tals to treat COVID-19 patients, two emergency spe-
cialty hospitals were constructed timely and speedily,
and the novel idea of Fangcang shelter hospital was ini-
tiated with several of them quickly developed in days
(Fig. 1) [13]. Meanwhile, starting from Jan 24, 2020, 346
medical teams with more than 42,600 medical workers
from across China were sent to Hubei Province to help
fight the virus, among them more than 35,000 were dis-
patched to Wuhan which doubled the medical manpower
in the city [14]. These improvements of medical resources
enabled the implementation of the centralized quaran-
tine and treatment for all confirmed and presumptive
cases, which also effectively helped with the isolation
of the ills from their family members and communi-
ties. Starting from Feb 17, 2020, a large scale door-to-
door and individual-to-individual screening policy had
been conducted for all residents, by doing so all symp-
tomatic individuals were identified and isolated during
this phase [15, 16]. From March 18 to March 31, there
were no more new symptomatic cases reported and the
first wave of COVID-19 outbreak in Wuhan was success-
fully controlled with a total of 50,006 reported symp-
tomatic cases [17]. On April 8, 2020, the lockdown of
Wuhan was officially lifted.Meanwhile,WuhanMunicipal
Health Commission (WMHC) started to report asymp-
tomatic cases on April 1, 2020, on a daily basis and a
total of 1,173 asymptomatic cases were reported from
April 1 to May 31 when the last symptomatic cases were
identified [18].
Mathematical modeling has become an important and

useful tool in analyzing the epidemiological character-
istics of infectious diseases. The scientific community
responded to the outbreak of COVID-19 in Wuhan very
promptly and efficiently with a number of modeling stud-
ies published based on the early outbreak data in and
exported from Wuhan. The early modeling studies have
greatly helped policy makers in understanding the epi-
demiological characteristics of COVID-19 [4, 19], assess-
ing the speed of spatial transmission [20–22], predicting
possible outcomes of the outbreak [23–26], and evalu-
ating efficacy of various nonpharmaceutical intervention
strategies (NPIs) [27–31]. In particular, a dataset of 32,583
laboratory confirmed cases was analyzed [15] by a well-
developed statistical method [32] which requires the date
of symptom onset for each patient - a piece of informa-
tion not publicly available for all reported cases inWuhan.
The analysis [15] focused on calculating the time-varying
effective reproduction number Rt and the time point for
Rt falling below 1 was believed as when the nonphar-
maceutical intervention became completely effective [33].
Based on the same dataset of the 32,583 laboratory con-
firmed cases, a modeling approach was used [16] to recon-
struct the full-spectrum dynamics of COVID-19 between
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Fig. 1 Daily reported cases, important events and timelines in Wuhan from Dec 8, 2019 to March 18, 2020, obtained from Wuhan Municipal Health
Commission website [18]. 1. NHCC - National Health Commission of China; 2. NSNCD - National Stationary Notifiable Communicable Diseases; 3. Jan
24, starting at 10:00am, Wuhan suspended all means of public transport (buses, ferries, subways, etc.) in the city; closed all outbound routes via
buses, flights and railways; closed Yangtze River Tunnel; 4. Jan 26, Wuhan banned all motor vehicles in the city center; 5. WHO declared a novel
coronavirus outbreak that originated in Wuhan a public health emergency of international concern (PHEIC); 6. Huoshenshan and Leishenshan
hospitals were two newly built ad hoc hospitals with 1,000 beds and 1,600 beds, respectively, and facilities designed to treat COVID-19 patients; 7.
“Fangcang” shelter hospitals: Wuhan turned 11 sports centers, exhibition halls, and other local venues into makeshift hospitals with more than
10,000 beds for confirmed COVID-19 patients with mild symptoms

Jan 1 and March 8, 2020 across five periods marked by
events and interventions.
Note that the number of officially reported COVID-

19 cases (clinically diagnosed and laboratory confirmed)
in Wuhan was 50,006 by the end of March 2020 [17],
which has not been studied in the literature, neither by
statistical analysis nor by mathematical modeling. More-
over, the dynamics of asymptomatic cases, the impact of
these asymptomatic cases on the transmission dynamics,
and the possibility of undetected cases [34] have not been
thoroughly investigated for the COVID-19 outbreak in
Wuhan based on the complete reported data.
In this paper, we developed a compartmental model

(Fig. 2) to describe the dynamics of disease transmission
and case identification of COVID-19 in Wuhan, param-
eterized the time-dependent model coefficients based on
the reported data and well-documented timelines on con-
trolling COVID-19 in Wuhan (Fig. 1) [13, 15, 16, 35, 36],
and used the model to calibrate the 50,006 reported cases
by the end of March 2020. Our goals were to use data
fitting results to infer the average strength of the nonphar-
maceutical intervention strategies during each stage of the
outbreak, estimate the scale of unobserved symptomatic
cases, project the number of infections in different stage of

the outbreak from the hidden dynamics, and calculate the
overall attack ratio, that is the antibody prevalence level
in the population, based on various assumptions on the
percentage and infectiousness of the asymptomatic cases.

Methods
Our model simulations were used to capture the dynam-
ics of COVID-19 transmission, case detection and report
during several time periods corresponding to different
levels of public health interventions implemented in
Wuhan [15, 16]. Before the lockdown on Jan 23, 2020,
no strong interventions were imposed. Between Jan 24
and Feb 1, 2020, social distancing measures were first
implemented, and many infected individuals were not
diagnosed and were only self-isolated at home due to
the shortage of medical resources. On Feb 2, 2020, all
residents were required to stay at home, and beginning
from Feb 6, 2020, makeshift hospitals were set up and
started to admit large number of patients, mostly with
mild symptoms [13]. On Feb 17, 2020, large scale door-to-
door and individual-to-individual screening was initiated
to identify for all symptomatic residents (Fig. 1).
In our simulations, the transmission rate varied in the

three periods with escalated restrictions on activities of
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Fig. 2 Transmission and detection dynamics of COVID-19 in Wuhan. Compartments in blank background describe the transmission dynamics while
compartments in mint background refer to the case detection and reporting dynamics. The population is stratified into seven compartments:
susceptible (S(t)), exposed (E(t)), infectious but asymptomatic (A(t)), infectious, symptomatic, and detectable (I1(t)), infectious, symptomatic, but
undetectable (I2(t)), effectively isolated (H(t)), recovered or removed due to death (R(t)) at time t. For the dynamics of case identification and
reporting, D(t) is the number of cases that are detectable but not yet detected or reported andW(t) is the number of cases that have been
reported at time t. Phase I represents the period before Jan 23 (the day of lockdown) and Phase II refers to the period after Jan 23

local residents: no intervention, social distancing order,
and mandatory stay-at-home. The isolation rate changed
in the three periods with varied medical resources: before
lockdown when the hospitals were not overwhelmed, post
lockdown when the makeshift hospitals were still under
construction, and two weeks after lockdown when Fang-
cang hospitals started admitting patients. Asymptomatic
(subclinical) individuals were unlikely to be detected,
while some symptomatic individuals could also be unde-
tected due to the scarcity of testing facilities and public
awareness. The fraction of detectable symptomatic indi-
viduals would vary in three periods: before Jan 23, 2020
when not all symptomatic cases would seek for medical
diagnosis, between Jan 24 and Feb 17, 2020 when test-
ing resources were insufficient, and after Feb 17, 2020
when no symptomatic cases would be missed because
of the massive population-wide screening. The average
delay from symptom onset to confirmation and report
varied throughout five periods of the outbreak, and the
rate of reporting in our model was parameterized accord-
ingly. The mass population migration during Chunyun
was modeled by an emigration rate during the two-week
window right before lockdown. Further, the infectious-
ness stage within which symptomatic individuals can be
detected would differ before and after the lockdown due
to public awareness: before the lockdown only those who
were hospitalized could be tested and diagnosed, while
after the lockdown any individual with onset symptom
could seek for diagnosis and become detectable.

The time-dependent transmission model
We developed a time-dependent deterministic model to
simulate the transmission dynamics of COVID-19 and
the detection-report dynamics of identifiable cases, with
time-dependent parameters and terms reflecting the vari-
ations of NPIs and detection capacities during different
stages of the outbreak. The population in Wuhan is strat-
ified into seven compartments at any time t: susceptible
(S), exposed (E), infectious but asymptomatic (A), infec-
tious, symptomatic, and detectable (I1), infectious, symp-
tomatic, but undetectable (I2), effectively isolated (H),
recovered or removed due to death (R). This classifica-
tion is based on various assumptions. Firstly, considerable
evidence suggested that there existed asymptomatic yet
infectious individuals, so we assumed that a fixed pro-
portion f of the infectious population would develop
symptoms, the rest of them would be asymptomatic and
hence would not be detected at all. Secondly, as the test-
ing and detection abilities in Wuhan kept evolving during
the outbreak, it is highly possible that only a fraction
of symptomatic cases could be observed and reported.
Thus we assumed that among those symptomatic indi-
viduals, a proportion q(t) of them would be observed,
tested (or diagnosed), then reported as confirmed cases,
while the rest of them would not be observed. Further,
we assumed that the incubation period overlaps with
latent period and with an average length of 5.2 days [37].
Thus the exposed individuals are neither symptomatic nor
infectious.
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In addition, we incorporated the dynamics of case iden-
tification and reporting in the model. In Wuhan, each
case was first detected (either via RT-PCR lab test or
via clinical diagnosis) and then reported as a confirmed
case. We denoted D(t) as the number of cases that were
detectable but not yet detected or reported at time t,
and W (t) as the number of cases that had been reported
at time t. Therefore, W (t) corresponds to the cumula-
tive number of reported cases at time t, while the inflow
from D(t) to W (t) each day would correspond to the
daily reported cases. Note that the case identification and
reporting dynamics were derived to keep track of the case
counts, not the actual population. Thus the equations
about D(t) and W (t) were decoupled from the trans-
mission dynamics and were only used for data fitting.
The compartmental dynamics are illustrated in Fig. 2
and model is described by the following time-dependent
ordinary differential equations:

dS(t)
dt

= −β(t)S(t)
I1(t) + I2(t) + pA(t)

N(t)
− m(t)S(t),

dE(t)
dt

= β(t)S(t)
I1(t) + I2(t) + pA(t)

N(t)
− σE(t) − m(t)E(t),

dI1(t)
dt

= q(t) · f · σE(t) − γ (t)I1(t) − m(t)I1(t),

dI2(t)
dt

= (1 − q(t)) · f · σE(t) − μI2(t) − m(t)I2(t),

dA(t)
dt

= (1 − f ) · σE(t) − μA(t) − m(t)A(t),

dD(t)
dt

= λ(t) − φ(t)D(t),

dW (t)
dt

= φ(t)D(t),

λ(t) =
{

γ (t)I1(t), t ≤ January 23, 2020 (Phase I),
q(t)f σE(t), t > January 23, 2020 (Phase II).

(1)

As shown in model (1), the inflow to D varies in differ-
ent phases: we assumed that symptomatic and detectable
cases can only be tested and reported after hospitalization
before the lockdown as there was a lack of public aware-
ness and test availability; and can be tested and reported
upon symptom onsets after the lockdown because of the
population-wide alertness about the virus and expanded
test capacity. Therefore, φ(t) represents the rate from hos-
pitalization to report for the time before the lockdown,
and represents the rate from onset of symptom to report
for the time after the lockdown. The time-dependent
parameters were assumed as step functions, where the
cutoff date for each stage was retrieved from various
literature and news reports [13, 15, 16, 37, 38].

• The transmission rate β(t) can be expressed as a
product of the overall population contact rate and the

probability that a contagion incidence happens
during each contact, where the value of β(t) at each
stage represents the effects of NPIs including mass
quarantine, social distancing, use of face masks, and
use of PPEs in health care workers. We respectively
assumed a constant transmission rate β1 on and
before Jan 23, 2020, β2 from Jan 24, 2020 to Feb 1,
2020, and β3 on and after Feb 2, 2020. Transmission
rates at all stages were estimated from data fitting.

β(t) =
⎧⎨
⎩

β1, t ≤ January 23, 2020,
β2, January 23, 2020 < t ≤ February 1, 2020,
β3, t > February 1, 2020.

• Isolation rate γ (t) of symptomatic individuals was
determined directly by the capacities of hospital beds
and isolation facilities, which were of severe shortage
after the lockdown and then had increased fourfold
as two new hospitals and several Fangcang shelter
hospitals were built in a short time. We assumed a
constant isolation rate γ1 on and before Jan 23, 2020,
γ2 from Jan 24, 2020 to Feb 6, 2020, and γ3 on and
after Feb 7, 2020 when Fangcang shelter hospitals
started admitting patients. We adopted information
from the early stage of the outbreak [37] and fixed
γ1 = 1/9.1 day−1. Both γ2 and γ3 were hard to be
estimated due to limited hospital beds information,
but estimating both from data fitting would result in
parameter unidentifiability issues, so we fixed γ2 at
various values (1/3, 1/6, 1/9, 1/12), and estimated
all other unknown parameters including γ3 in
multiple scenarios.

γ (t) =
⎧⎨
⎩

γ1, t ≤ January 23, 2020,
γ2, January 23, 2020 < t ≤ February 6, 2020,
γ3, t > February 6, 2020.

• The fraction q(t) of observable cases would vary with
respect to public awareness, surveillance intensity
and testing abilities, where in Wuhan there was a low
public awareness of the emerging outbreak before the
lockdown, while a massive community screening for
symptomatic individuals was launched around Feb
19, 2020. We assumed a fraction q1 of symptomatic
cases were detectable on and before Jan 23, 2020, a
fraction q2 of symptomatic cases were detectable
during Jan 24 and Feb 18, 2020, and all symptomatic
cases were detectable after Feb 19, 2020. Both q1 and
q2 were estimated from data fitting.

q(t) =
⎧⎨
⎩
q1, t ≤ January 23, 2020,
q2, January 23, 2020 < t ≤ February 17, 2020,
q3, t > February 17, 2020.

• There were notable delays between symptom onset
and laboratory confirmation throughout all stages of
the outbreak, where a detailed statistics for all patients
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in Wuhan has been well-documented [15, 16]. We
can therefore calculate the mean values of the delays
in these five periods: 23 days on and before Jan 10, 15
days from Jan 11 to Jan 23, 11 days from Jan 24 to Feb
1, 7 days from Feb 2 to Feb 16, and 4 days after Feb 17,
2020. In this way, the case detection and report rate
φ(t) can be parameterized accordingly. In particular,
during the first two stages, we assumed that patients
were only detectable after hospitalization, given the
average onset to hospitalization period as 9.1 days
[37], we thus had the delay between hospitalization to
detection to be 13.9 and 5.9 days respectively in the
two periods prior to the lockdown.

φ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ0, t ≤ January 10, 2020,
φ1, January 10, 2020 < t ≤ January 23, 2020,
φ2, January 23, 2020 < t ≤ February 1, 2020,
φ3, February 1, 2020 < t ≤ February 16, 2020,
φ4, t > February 16, 2020.

• Chunyun is the busiest travel season in China which
began on Jan 10 in 2020. It was reported that 5
million people had already left Wuhan in this period,
leaving 9 million local population under lockdown
and massive quarantine [38]. We used a linear net
migration ratem(t) to model the massive population
emigration fromWuhan: fixed the total population in
Wuhan before Jan 10, 2020 as 14 million, and the
total population after Jan 23, 2020 as 9 million, then
setm(t) = 0.03155 day−1 between Jan 10 and Jan 23,
2020 so that the total population can gradually
decrease from 14 million to 9 million during a
two-week window. In particular, we assumed that
isolated individuals were not mobile and all other
population compartments were modeled with the net
emigration rate.

m(t) =
⎧⎨
⎩
0, t < January 10, 2020,
m, January 10, 2020 ≤ t ≤ January 23, 2020,
0, t > January 23, 2020.

Data collection
We searched the websites of the local Wuhan Munici-
pal Health Commission (WMHC) (http://wjw.wuhan.gov.
cn/), Health Commission of Hubei Province (HCHP)
(http://wjw.hubei.gov.cn/), National Health Commission
of China (NHCC), http://www.nhc.gov.cn/, as well as
World Health Organization (WHO), https://www.who.
int/ in both Chinese and English for data, extracted the
local case counts in Wuhan, and obtained a data set up
to March 31, 2020. The symptom onset of the first con-
firmed case can be dated back to Dec 8, 2019, and the
first case cluster was included in the set of probable case
count of 27 reported as early as Dec 31, 2019 [1, 3, 5].
We thus incorporated the 27 case count as the first data

point. The total of 41 cases reported on Jan 10, 2020 was
our second data point [3, 5, 6]. Starting from Jan 11, 2020,
WMHC has been providing a daily confirmed case report
for Wuhan City, and starting from Jan 22, 2020, HCHP
has been giving a daily briefing on the outbreak data for
Hubei Province that includes data for Wuhan. Therefore,
we used the confirmed cases (both laboratory confirmed
and clinically diagnosed) that were reported on Dec 31,
2019 and continuously reported from Jan 10 to March
31, 2020 for our fitting [18]. Note that there were 50,007
reported cases on March 31, 2020 [17], but one of the
cases was an imported case. As we were studying the local
outbreak inWuhan, we excluded the imported case in our
simulations.

Fitting data
We conducted multiple fitting experiments under vari-
ous assumptions on the asymptomatic individuals. There
is a wide range of estimates on the fraction of symp-
tomatic cases (f ) and their reduced transmission ability (p)
[39–42]. Here we picked a total of 81 possible pairs of
(f , p) ranging from 0.1 ∼ 0.9 for each parameter. Then
for each pair of (f , p), we performed data fitting in two
separate phases and compared the goodness-of-fit by esti-
mating elpdloo - the expected log pointwise predictive
density using leave-one-out (loo) cross validation [43, 44].
Phase I: Cumulative reported case data from Dec 31,

2019 to Jan 23, 2020 were fitted to our model via the
Monte Carlo Markov Chain (MCMC) method by using
the software Stan [43]. Specifically, the model was initi-
ated on Dec 8, 2019 (day 0) with 14 million susceptible
individuals, 1 symptomatic case, and zero for all other
compartments. We estimated the values of the transmis-
sion rate (β1) and the fraction of detectable cases (q1), with
uniform prior distributions in (0, 5) and (0, 1) respectively.
For the likelihood function, we assumed that the cumu-
lative observed cases on day t, Xt , follows a lognormal
distribution with mean given by lnW (t) from the model;
that is,

Xt ∼ LogNormal(lnW (t), σ 2
0 ),

where σ0 > 0 was sampled together with the estimated
parameters. Convergence was checked by calculating the
R̂ value in Gelman-Rubin diagnostic [45] and examining
the effective sample size. Phase I corresponds to the expo-
nential growth of the epidemic, and the predicted values
for model compartments all vary in wide bands. To con-
tinue our fitting for the next phase, we picked the median
value for each compartment predicted from the model
and set them as the initial condition for Jan 23, 2020 (day
46) so as to initiate the next stage fitting.
Phase II: We fitted cumulative reported case data from

Jan 24 to Mar 31, 2020 to our model via the same tech-
niques in Phase I. Preliminary experiments showed that

http://wjw.wuhan.gov.cn/
http://wjw.wuhan.gov.cn/
http://wjw.hubei.gov.cn/
http://www.nhc.gov.cn/
https://www.who.int/
https://www.who.int/
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the five essential parameters, β2,β3, q2, γ2, γ3 were inter-
dependent and fitting all of them to the data would result
in parameter unidentifiability issues. Therefore, in order
to achieve credible fitting results one has to fix one more
parameter from the five unknowns. We chose to fix the
isolation rate between Jan 24 to Feb 6 (γ2) at different val-
ues in comparison to the isolation rate before lockdown
(γ1). Between Jan 24 and Feb 6, 2020, the unprecedented
lockdown was suddenly enforced and medical resources
were scarce, and it was unclear if the actual isolation rate
during this period was faster or slower than that before
the lockdown: on one hand, this period was reported to
be the most difficult period for symptomatic individuals
to seek for health cares [15, 16] which could delay hos-
pitalizations; on the other hand, this was also a period
with rapidly enhanced public alertness of the emerging
pathogen which could lead to voluntary self-isolation. So
we made several hypothesized scenarios by fixing γ2 at
various values and then fitted the other 4 parameters to
data. Specifically, we let γ2 = 1/3, 1/6, 1/9, 1/12, and
named the corresponding fittings respectively as 3-day,
6-day, 9-day, and 12-day isolation scenario. Each sce-
nario corresponds to an assumed comparison between the
overall isolation rate from Jan 24 to Feb 6 and the iso-
lation rate before lockdown: 3-day and 6-day scenarios
assumed faster isolation after lockdown, 9-day scenario
assumed similar isolation before and after lockdown,
while 12-day scenario assumed slower isolation after
lockdown.

Results
We conducted the two-phase fitting with a total of 324
times with parameter set (f , p, γ2) fixed at various presum-
able values. The description on the fixed, varied, and fitted
parameters were summarized in Table 1.

Fitting outcomes
Firstly, we compared the goodness of fit for each parame-
ter set by evaluating the expected log pointwise predictive
density using the LOO package in R [43, 44] and plot-
ted the value for each fitting in four heatmaps about
(f , p) with γ2 respectively fixed at its four assumed val-
ues. Figure 3a shows one heatmap with γ2 = 1/3 where
the set (0.9, 0.1, 1/3) circled in black has the largest elpdloo
value among all 324 fittings. However, the standard errors
of elpdloo for all fittings share similar values around 8.3,
which was of the same scale with the biggest difference
among all elpdloo values. This indicates that there is no big
difference between all 324 fittings and there is also no best
fitting scenario under which one can select the most pos-
sible values of f , p, and γ2. The fitting results were shown
in Fig. 4 for the parameter set (0.9, 0.1, 1/3) as a represen-
tative, while the results from all other fittings are visually
similar.

Table 1 Table of Parameters

Parameter Description Value Resources

β1 transmission rate on and
before 1/23/2020

Fitted -

β2 transmission rate from
1/24/2020 to 2/1/2020

Fitted -

β3 transmission rate on and
after 2/2/2020

Fitted -

γ1 isolation rate on and
before 1/23/2020

1/9.1 day−1 [37]

γ2 isolation rate from
1/24/2020 to 2/6/2020

Varied [13]

γ3 isolation rate on and after
2/7/2020

Fitted -

q1 fraction of observable
cases on and before
1/23/2020

Fitted -

q2 fraction of observable
cases from 1/24/2020 to
2/17/2020

Fitted -

q3 fraction of observable
cases on and after
2/18/2020

1.0 [15, 35]

φ0 detection and report rate
on and before 1/10/2020

1/13.9 day−1 [15]

φ1 detection and report
rate from 1/11/2020 to
1/23/2020

1/5.9 day−1 [15]

φ2 detection and report
rate from 1/24/2020 to
2/2/2020

1/11 day−1 [15]

φ3 detection and report
rate from 2/3/2020 to
2/16/2020

1/7 day−1 [15]

φ4 detection and report rate
on and after 2/17/2020

1/4 day−1 [15]

μ recovery rate 1/14 day−1 [42]

σ infectiousness
development rate

1/5.2 day−1 [37, 46]

f fraction of symptomatic
cases

Varied [39–41]

p reduced transmissibility of
asymptomatic individuals

Varied [35, 39, 41]

m net population migration
rate from 1/10/2020 to
1/23/2020

0.03155 day−1 Calculated

N1 total population in Wuhan
on and before 1/23/2020

14 million [38]

N2 total population in Wuhan
on and after 1/24/2020

9 million [38]

Our model was used to calibrate the reported COVID-
19 cases in Wuhan from Dec 8, 2019 to March 31, 2020
(Fig. 4) and to explain the sudden spike of confirmed
cases on Feb 12, 2020, when 14,840 new cases (including
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Fig. 3 a Goodness of fit for simulations under various assumptions on (f , p) and with γ −1
2 = 3 days. b Numbers of patients isolated from Feb 6 to

Mar 10, 2020 - the operation period of Fangcang shelter hospitals. The simulations were done based on f = 0.9, p = 0.1 and with various γ2 values.
c Numbers of new infections in various phases. Simulations were carried out based on f = 0.9, p = 0.1, γ −1

2 = 3 days. d Ratios between β2 and β1

under all assumptions. The plot represents the distribution of a total of 324 ratios β2/β1, where β1 (β2) is the posterior median of β1 (β2) from Phase
I (Phase II) fitting under each combination of (f , p, γ2). e Posterior medians of q2 under all assumptions. The plot shows the distribution of the
posterior medians of q2 from Phase II fitting under all combinations of (f , p, γ2)
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Fig. 4 Simulations of the reported COVID-19 cases in Wuhan from Dec 8, 2019 to March 31, 2020, by using our model. a Simulation of the daily
reported cases; b Simulation of the cumulative COVID-19 cases. The simulations were performed based on f = 0.9, p = 0.1, γ −1

2 = 3 days

13,332 clinically diagnosed cases) were reported in a sin-
gle day. The key was to take into consideration the phased
intervention strategies, health care resources, and more
importantly the delay from symptom onset to diagnosis
and report. Further, some hidden dynamics of the trans-
mission such as the daily exposed and infectious popula-
tions can be simulated via the well-parameterized model.
We found that, regardless of the presumed parameter set,
under all scenarios the exposed population peaked on Feb
2, 2020 - right before the stay-at-home order was enforced,
and the unisolated symptomatic individuals peaked on

Feb 6, 2020 - right before the Fangcang shelter hospitals
started to admit a large number of patients (Fig. 5).
Figure 3b shows that the total number of isolated cases

during the operation period of Fangcang shelter hospi-
tals would differ in terms of the assumed value for γ2: the
more effective the isolation was before Feb 6, 2020, the less
patients were left for admission to the newly constructed
health care facilities. Additionally, this measurement was
not sensitive to the assumptions on (f , p), and hence can
be used to match with real admission count and to deter-
mine the credible range for γ2. There were around 15,711
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Fig. 5 Daily exposed and unisolated symptomatic populations. The reconstructed transmission dynamics about exposed and infectious
populations are not dependent on the parameter set used for fitting. We observed that the exposed population peaked on Feb 2, 2020, and the
unisolated symptomatic individuals peaked on Feb 6, 2020

patients admitted in total in Fangcang shelter hospitals
[13] and around 2,500 operational beds in the two newly
constructed emergency specialty field hospitals. However,
due to the lack of knowledge about the admissions in other
hospitals during the specific period, the γ2 value cannot
be identified without further information.

Intervention efficacy
The fitted parameters were quantifications of the aver-
age strengths of intervention strategies during multiple
stages: β1,β2,β3 reflect the overall efficacy of almost no
intervention, social distancing, and stay-at-home policies
before lockdown, between Jan 24 to Feb 1, 2020, and
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after Feb 2, 2020. Among all 324 scenarios, the posterior
distribution of β3 always falls in a very narrow inter-
val close to zero (Figs. 6 and 7), meaning that there was
extremely limited transmission effective contacts after the
enforcement of stay-at-home policy. On the other hand,
the transmission rate shortly after lockdown was shown to
be around twice of that before the lockdown in all scenar-
ios (Fig. 3d). Thus there were more transmission effective
contacts between the susceptible and infectious individ-
uals during the social distancing period compared with
no intervention period. Such findings, however, are not
hard to comprehend: right after the unprecedented lock-
down, many people with suspected symptoms rushed to
hospitals, waited hours in mixed crowds before seeing a
doctor, getting tests, and obtaining medications. These
extremely mixed crowds indeed posed increased effec-
tive contacts between infected individuals and susceptible
people (including both susceptible patients and health
care workers) and the medical system in Wuhan during
that period was completely overwhelmed and as a result
many patients had to go home even they were clinically
diagnosed. Consequently, family cluster and community
cluster infections increased dramatically during this spe-
cial period [15, 16, 47].
The average fractions of identifiable symptomatic cases

before lockdown (q1) and between Jan 24 to Feb 17, 2020
(q2) turned out to differ significantly: the posterior dis-
tribution of q1 was flat with mean around 0.5 under all
scenarios, indicating that a considerable portion of symp-
tomatic cases might have been missed before the increase
of public awareness of the lockdown; while the posterior
sampling of q2 was concentrated in narrow intervals close
to 1.0 under all scenarios (Fig. 3e), meaning that cases with
symptom onsets after the lockdown had been widely iden-
tified and documented. The last parameter to be fitted to
real data was γ3 - the average rate of isolation after Feb
6, 2020, and not surprisingly this rate was estimated to
be even slightly larger than 1.0. This means that all cases
were promptly isolated upon their development of infec-
tiousness after the centralized quarantine policy was put
in effect and with the aids of the newly added medical
resources, isolation and quarantine facilities.

Infections in different phases
We calculated the number of infection incidences during
phases from Jan 24 to Feb 1, 2020 (9 days), from Feb 2 to
Feb 6, 2020 (5 days), from Feb 7 to Feb 17, 2020 (11 days),
and after Feb 18, 2020. The relative numbers of infec-
tions during the four phases were found to be insensitive
with respect to the assumptions on γ2 and p, but their
actual values were clearly sensitive to the assumptions
on f - which is intuitively understandable as the higher
the fraction of asymptomatic cases is, the more infections
could have been generated. We presented the scenario

with f = 0.9 (when 90% of the cases were symptomatic)
in Fig. 3c. The daily infection incidences for symptomatic
cases were not sensitive to f and thus similar in all scenar-
ios: 3,780 (95% CI [ 3265, 4246]) new cases per day from
Jan 24 to Feb 1, 2020; 2,554 (95% CI [ 2203, 3022]) per day
from Feb 2 to Feb 6, 2020; and 206 (95% CI [ 15, 508])
per day from Feb 7 to Feb 17, 2020. Our results indi-
cated that Jan 24 to Feb 1, 2020 (right after lockdown)
was the most severe period of the outbreak with 67.6%
(95% CI [ 0.584, 0.759]) detectable infections occurred
during these 9 days. Although the transmission rate could
have been reduced significantly after Feb 2, 2020, but as
there were so many infectious cases in the community
the transmission was still critical. New infection inci-
dences were significantly brought down after the improve-
ment of medical resources, thus both the stay-at-home
order and the quick isolation of infectious individuals
played the most essential roles in the containment of the
outbreak.

Asymptomatic, undetected and total cases
Other hidden quantities that can be estimated via our
model would be the numbers of asymptomatic and unde-
tected cases and the overall antibody prevalence level
after the outbreak. Specifically, with a well-parameterized
model, the total number of asymptomatic and unde-
tected cases residing in Wuhan can be calculated via∫ ∞
0 μ(A(t) + I2(t))dt, the total number of infected cases
can be evaluated by

∫ ∞
0 [μ(A(t) + I2(t)) + γ (t)I1(t)] dt,

and the overall antibody prevalence level can be estimated
via

∫ ∞
0 [μ(A(t) + I2(t)) + γ (t)I1(t)] dt/N2.

Recently, it was reported that for asymptomatic indi-
viduals the median duration of viral shedding was much
longer and the virus-specific IgG levels were significantly
lower compared to the symptomatic cases [42]. How-
ever, there are very few studies on the percentage of
asymptomatic cases in the total infected population and
their transmission ability [35, 41, 48]. First of all, we
found these outcomes insensitive to the assumption on
γ2: that is, under fixed f and p values, we obtained simi-
lar estimations on the total number of asymptomatic and
undetected cases and overall antibody prevalence level
regardless of the fixed value of γ2. This enabled us to
present our estimations as a table based on assumptions
about asymptomatic individuals. In Fig. 8a and b, we
plotted the median values of the simulated total number
of unidentified cases, respectively, including and exclud-
ing the asymptomatic individuals who were infected after
lockdown. Clearly, the total number of asymptomatic and
undetected cases depends positively on the fraction of
asymptomatic cases and the transmissibility of asymp-
tomatic individuals. In Fig. 8c, we plotted the 95% con-
fidence intervals of our model estimations on the overall
antibody prevalence in Wuhan for all possible scenarios
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Fig. 6 Posterior distributions of fitted parameters in Phase I under various scenarios. We performed fittings in a total of 81 scenarios about different
assumed pairs of (f , p) for Phase I and selected 9 scenarios for f , p = 0.3, 0.5, 0.7 in the presentation. The estimated values of transmission rate β1 are
smaller given larger fraction of symptomatic individuals (f ) or larger infectiousness of the asymptomatic individuals (p). The posterior distributions of
the unobserved case fractions are independent from the assumed (f , p) pair
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Fig. 7 Posterior distributions of fitted parameters in Phase II under various scenarios. We performed fittings in a total of 324 scenarios for Phase II
with various assumed sets of (f , p, γ2). Here we selected 9 scenarios with f , p = 0.3 and γ2 = 1/3, 1/9. The estimated values of q2,β3 and γ3 were
independent from the set of parameters chosen, while the value of β2 increases as γ2 increases and depends on (f , p) similarly as in Phase I

with fraction of symptomatic cases f varies from 0.1 to 0.9
(i.e. the percentage of asymptomatic cases varies from 90%
to 10%) and the reduced transmission ability p of asymp-
tomatic individuals changes (to that of symptomatic ones)
from 10% to 90%. Figure 8c indicates that at most 5 ∼ 6%
of the whole population had contracted the virus.
To estimate the numbers of asymptomatic and unde-

tected cases and the overall antibody prevalence level in
Wuhan, we estimated f and p from the literature. Based
on a total of 2,147 close contacts of COVID-19 132 cases
in Ningbo, China, analysis of nucleic acid tests showed

that 17% of cases were asymptomatic among all nucleic
acid test-positive cases [39]. This agreed with the esti-
mate from the 391 SARS-CoV-2 cases and 1,286 close
contacts in Shenzhen, China, where approximately 20% of
nucleic acid test-positive cases were asymptomatic [40].
A living systematic review and meta-analysis of 94 stud-
ies also showed that the overall estimate of the proportion
of people who become infected with SARS-CoV-2 and
remain asymptomatic throughout infection was 20% (95%
CI [17%, 25%]) [49]. So we chose f = 0.8. It was estimated
that the infection rates of symptomatic and asymptomatic
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Fig. 8 Undetected cases under various assumptions of the fraction of symptomatic cases (f ) and reduced transmissibility of asymptotic individuals
(p). a Possible total number of undetected cases (including asymptomatic and symptomatic) with recovery/removal dates after lockdown. b
Possible total number of undetected symptomatic cases with recovery/removal dates after lockdown. c Possible percentage (95% CI) of
population-wide antibody prevalence level after the outbreak. The number shown in each cell corresponds to the projected value from the model
with each combination of (f , p) while γ −1

2 = 3 days

individuals were 6.30% and 4.11%, respectively [39]; that
is, the transmissibility of asymptomatic individuals is
about 70% of the symptomatic ones. So we set p = 0.7
[35, 39–41]. From Fig. 8b and c, we estimated that there
were 14,448 asymptomatic and undetected cases (95% CI
[ 12, 364, 23, 254]), which yields an estimate of a total of
64,454 infected cases (95% CI [ 62, 370, 73, 260]) inWuhan
by March 31, 2020. Thus, the overall antibody prevalence
level in the population of Wuhan was 0.745% (95% CI
[ 0.693%, 0.814%]) by the end of March 2020. Hence, due
to the efficient containment strategies implemented, the
population in Wuhan is far away from building up herd
immunity [50, 51].

Discussion
Wuhan is the capital of Hubei Province and is considered
the political, economic, financial, commercial, cultural
and educational center of Central China. There are more
than one million undergraduate and graduate students
from all around the world currently attending about 40
universities in the city. There were direct flights from

Wuhan to most major international cities. The “Golden
Waterway” of the Yangtze River and its largest tributary,
the Han River, divide Wuhan into three districts: Hankou,
Hanyang and Wuchang. It is a major transportation hub
with dozens of railways and expressways passing through
the city and connecting to other major cities. The infras-
tructure has been dramatically improved in China in the
last 20 years by the fast development and expansion of
the fast train and highway systems, which makes travel
easier and faster. By taking the fast train from Wuhan,
one can reach Shanghai in the east, Guangzhou in the
south, Xian in the west and Beijing in the north within
five hours. The ease of transportation can be a double-
edged sword, when these advantages turned around and
hurted in the case of the COVID-19 outbreak, that was
first identified there. As a matter of fact, by the end of Jan-
uary 2020, COVID-19 had been spread fromWuhan to all
other prefectures in Hubei Province, all other provinces,
autonomous regions, municipalities, and special adminis-
trative regions in China as well as more than two dozen
other countries.
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Prevention and control strategies, such as early diagno-
sis and treatment of infected individuals, tracing and quar-
antining of exposed individuals, and isolation of infectious
individuals, are standard and textbook-style measures for
any infectious disease in human population. But how
to interpret and implement these strategies, and more
importantly, when to implement these measures is chal-
lenging for each different infectious disease, in particular
for a disease caused by a coronavirus such as SARS-CoV,
MERS-CoV, and this SARS-CoV-2. From the news and
reports it seems that the local authorities in Wuhan did
follow these measures in early January 2020 during the
initial stage of the outbreak after 27 cases were reported
on December 31, 2019, in which all these cases were asso-
ciated with a seafood and wild animal market. The fact
that 14 more patients who were not associated with the
market were confirmed on January 10, 2020 strongly indi-
cated that this virus can be spread from human to human.
From the news and reports it seems that the public did not
receive the complete information about the infectiousness
and seriousness of the novel coronavirus in the early stage.
Also, there were no more new cases reported in the next
five days till January 16, 2020 (Fig. 1).
To prevent the geographic transmission and control

local spread of infectious diseases, lockdown of infected
regions is an easy-to-say but hard-to-implement policy
for the potentially political, economical, social, epidemi-
ological and other consequences, let alone the size, scale,
and population of Wuhan. Nevertheless, on January 23,
2020 (two days before the Chinese Spring Festival), the
local authorities locked down the entire Wuhan City and
suspended all local and long-distance public transporta-
tion. People were requested to stay at home and wear
face masks in public mandatorily. It is known that to
control local transmission of infectious diseases, reduc-
ing the transmission rate and quarantining the exposed
individuals are very effective measures. The transmission
rate can be interpreted as the production of c (the con-
tact rate between infectious and susceptible individuals)
and l (the probability of infection per contact). Staying at
home would help diminish daily contacts (c) and wearing
face masks in public would help decrease the probabil-
ity of virus transmission during contacts (l). From the
point of view of prevention and control, locking down
the entire city is the most effective way to prevent fur-
ther spread of the virus to other regions and to reduce
local transmission of the disease within the city. How-
ever, in the case of lockdown in Wuhan, nobody was
prepared for such a large-scale lockdown. Many people
with suspect symptoms ruched to hospitals, waited hours
after hours in mixed crowds before seeing doctors, getting
tests, and obtaining medicines, which created extremely
mixed crowds of SARS-CoV-2 infected individuals and
others and made some of those susceptible people more

likely to be infected with the virus. Doctors and health
care workers were overwhelmingly treating the large num-
ber of patients and some of them were infected. The
labs were extremely short of the test kits. Hospitals were
urgently short of beds. Many patients had to go home
even they were clinically diagnosed. As a result, family
cluster and community cluster infections increased dra-
matically in the first two week after lockdown [47]. Our
estimations indicated that the transmission rate between
Jan 24 and Feb 1, 2020 was on average twice as large as that
before the lockdown and two-thirds of detectable infec-
tions occurred during this severe period. However, we
would like to emphasize that this was caused by a mixture
of the benefits of social distancing and the setbacks of the
overwhelmed medical system and should never be inter-
preted as lockdown and social distancing being ineffective
in slowing down the spread.
To overcome these difficulties, the local authorities had

taken steps to face the reality. The number of labs that
can perform RT-PCR tests was increased from 2 (before
January 24) to 40 (after February 24) and the number of
RT-PCR test kits was increased from 200 (before January
24) to 7,000 (after February 4). Two new specific hospi-
tals, Huoshenshan with 1,000 beds and Leishenshan with
1,600 beds, were built in days and started to admit patients
on February 4 and 8, respectively. Eleven sport centers,
exhibition halls, and university dorms were turned into
makeshift hospitals with more than 10,000 beds for con-
firmed patients with mild symptoms (Fig. 1). The 35,000
plus medical workers came from across China during
the outbreak really helped the local medical system to
treat the infected patients, while these nonpharmaceuti-
cal interventions were the key to control the COVID-19
outbreak in Wuhan in less than three months.
The complete outbreak data of Wuhan with 50,006

reported cases is notoriously hard to fit due to the sud-
den spike of cases on Feb 12, 2020 (Fig. 1), which is
widely believed to be caused by the delay of case detec-
tion and reporting [15]. In our model, we incorporated the
case detection dynamics and parameterized the delayed
reporting rate accordingly in different phases, so that we
can reconstruct the full transmission dynamics via data
fitting. Indeed, using daily symptom onset data would
be the best way to avoid errors in parameter estimates
and model-based forecasts [16]. but such information was
not available for the 17,365 clinically diagnosed cases
[15]. Therefore, we used cumulative reported case data
and considered the case detection dynamics to fulfill our
needs of using the complete data and obtaining credi-
ble fitting outcomes. Also, our estimates of undetected
and asymptomatic cases and the overall antibody preva-
lence level in the population of Wuhan were based on
the estimates on the percentage of asymptomatic cases
among all nucleic acid test-positive cases (1 − f ) and
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their transmission ability (p) [39, 40]. Further survey on
the seroprevalence of SARS-CoV-2 antibodies in the pop-
ulation of Wuhan is needed which might show higher
1 − f and p values, while the estimated undetected cases,
asymptomatic cases, and the overall antibody prevalence
level can still be obtained from Fig. 8c.
Since the COVID-19 outbreak inWuhan was the first of

its kind and there was very limited knowledge about the
novel coronavirus, as well as the treatment and mitigation
of its infection, very restrictive control and prevention
measures were adapted and the outbreak was brought
under control in a relatively short time. Compared to the
outbreaks in some other regions, it seems that if lock-
downs are lifted too early, the novel coronavirus will
re-emerge and further lockdowns are needed. Our model
and techniques can be modified to study the epidemics in
other regions that have been experiencing multi-peaked
and long-time outbreaks by using multi-step functions to
estimate the model parameters and by employing multi-
stage models to calibrate the much longer term data.
One quantity that we avoided to discuss is the basic

reproductive number, R0, which was reported in almost
all modeling works on COVID-19 and has been compared
from study to study. R0 is defined as the average number of
secondary infections that could be generated by one infec-
tious individual over his/her entire illness period given a
fully susceptible population. In practical ODE models, R0
is formulated by calculating the spectral radius of the next
generation matrix obtained from the linearized system at
the disease-free state, and serves as a threshold to tell
whether or not the infectious population would increase
in a certain time period. The actual value of R0 is signifi-
cantly dependent on the model and the assumed param-
eter values, therefore, they might not be comparable if
obtained from different models or under different param-
eterizations. Occasionally, R0 is erroneously compared
with the daily (instantaneous) reproductive number in the
early stage of the outbreak that is obtained by statistical
methods, causing further confusions in understanding the
infectiousness of an epidemic disease. Overall, the main
purpose of calculating R0 and the effective reproductive
number Re is to evaluate the effectiveness of interven-
tion strategies during various time periods. Instead, ODE
modelers can easily calculate the actual number of infec-
tions at any time point from the well calibrated model
(as we did in this study), and this can provide another
straightforward approach to address the same question.
Our study has several limitations. Our results were

based on assumed values of fixed model parameters and
the assumed first day of transmission. Reasonable per-
turbations of the fixed model parameter values would
not significantly alter our quantitative outcomes, however,
alternative assumptions on the initial date of transmis-
sion would be worth further investigating. The initial date

of transmission (day 0) is crucial in the setup of initial
conditions for an ordinary differential equation (ODE)
system and would impact the estimations of the outbreak
growth rate in the early stage and thereafter. As the epi-
center of the novel disease outbreak, it could take a long
time for the scientific community to identify the origin
of the virus and the time of the first human-to-human
transmission inWuhan. With limited information, we ini-
tiated our simulations on Dec 8, 2019, which is believed to
be the earliest symptom onset date of all identified cases
[3, 15, 16]. Further, multivariate data (such as the daily
count of deaths and hospitalizations that are available
in many other affected countries) would help with the
enhancement of parameter estimations, which were hard
to be collected for Wuhan given the overwhelmed pub-
lic health system. A third aspect is that the age of the
host plays a crucial role in the infection, transmission and
mortality of COVID-19 [5, 15, 52, 53], which should be
considered in future modeling studies.

Conclusion
In the early stage of the COVID-19 outbreak, Wuhan
experienced serious shortages of medical resources, long
delays in case detection and reporting, and other issues.
The outbreak was under control by the implemen-
tation of a series of nonpharmaceutical interventions
(NPIs) including unprecedented lockdown of the city.
A time-dependent compartmental model was developed
to describe the dynamics of disease transmission and
case detection across different periods determined by key
events and interventions based on 50,006 reported cases
and to estimate the number of asymptomatic and unde-
tected cases. These results indicate that the combination
of NPIs has successfully mitigated the outbreak in Wuhan
and provide insights for designing control strategies and
planing vaccination programs for other affected countries
and regions.
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